Optimizing microgrid design and operation: A decision-making framework for residential distributed energy systems in Brazil

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Ana Paula Alves Amorim , Karen Valverde Pontes , Bogdan Dorneanu , Harvey Arellano-Garcia
{"title":"Optimizing microgrid design and operation: A decision-making framework for residential distributed energy systems in Brazil","authors":"Ana Paula Alves Amorim ,&nbsp;Karen Valverde Pontes ,&nbsp;Bogdan Dorneanu ,&nbsp;Harvey Arellano-Garcia","doi":"10.1016/j.cherd.2024.12.033","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the optimization of microgrid design and operation for residential distributed energy systems in Brazil, addressing the growing demand for sustainable energy in the context of climate change. A decision-making framework based on Mixed-Integer Nonlinear Programming (MINLP) is proposed to integrate distributed energy resources (DERs) such as solar, wind, and biogas. Key challenges include managing the variability of renewable resources and complying with local regulations, while also addressing gaps in literature, particularly the impact of time-dependent efficiency profiles on energy sharing within microgrids. By employing innovative analyses and clustering techniques, the research optimizes microgrid configurations, accounting for seasonal demand fluctuations and the influence of incentive policies on system feasibility. The findings reveal that incorporating a time-dependent efficiency model can reduce total costs by 45 %. This reduction underscores the importance of accurate efficiency predictions, as the model captures variations in energy generation and utilization efficiency over time, improving system optimization. Additionally, the findings reveal that a well-structured optimization model can meet 100 % of electricity and hot water demands across all scenarios, with customized incentives playing a crucial role in reducing costs and promoting sustainability.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"214 ","pages":"Pages 251-268"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224007123","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the optimization of microgrid design and operation for residential distributed energy systems in Brazil, addressing the growing demand for sustainable energy in the context of climate change. A decision-making framework based on Mixed-Integer Nonlinear Programming (MINLP) is proposed to integrate distributed energy resources (DERs) such as solar, wind, and biogas. Key challenges include managing the variability of renewable resources and complying with local regulations, while also addressing gaps in literature, particularly the impact of time-dependent efficiency profiles on energy sharing within microgrids. By employing innovative analyses and clustering techniques, the research optimizes microgrid configurations, accounting for seasonal demand fluctuations and the influence of incentive policies on system feasibility. The findings reveal that incorporating a time-dependent efficiency model can reduce total costs by 45 %. This reduction underscores the importance of accurate efficiency predictions, as the model captures variations in energy generation and utilization efficiency over time, improving system optimization. Additionally, the findings reveal that a well-structured optimization model can meet 100 % of electricity and hot water demands across all scenarios, with customized incentives playing a crucial role in reducing costs and promoting sustainability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信