{"title":"Evaluation of novel NaOH/activated carbon/zeolite biocomposite as an efficient adsorbent for oilfield produced water treatment","authors":"Eghe Amenze Oyedoh, Onyedikachi Praise Igbokwe","doi":"10.1016/j.sajce.2024.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the efficiency of a sodium hydroxide-modified biocomposite, synthesized from zeolite and activated carbon derived from coconut shells, for the removal of hydrocarbon from produced water. The adsorption process was optimized using Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) integrated with genetic algorithms. The results indicated a hydrocarbon removal efficiency of 99.86 % with RSM and 99.99 % with ANN under optimal conditions. The ANN model demonstrated superior predictive accuracy (R² = 0.9984, MSE = 0.4004, RMSE = 0.6328) compared to RSM (R² = 0.9976, MSE = 0.5635, RMSE = 0.7507). Characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Brunauer–Emmet–Teller (BET) analysis, and Energy Dispersive X-ray Spectroscopy (EDX), confirmed the successful integration of zeolite onto activated carbon and the presence of active functional groups favorable for hydrocarbon adsorption. The Redlich-Peterson model was identified as the best fit for the experimental data, highlighting the biocomposite's potential as an effective adsorbent for treating produced water. These findings show the promising application of NaOH-modified AC-ZE biocomposites in achieving sustainable development goals.</div></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"51 ","pages":"Pages 302-314"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524001458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the efficiency of a sodium hydroxide-modified biocomposite, synthesized from zeolite and activated carbon derived from coconut shells, for the removal of hydrocarbon from produced water. The adsorption process was optimized using Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) integrated with genetic algorithms. The results indicated a hydrocarbon removal efficiency of 99.86 % with RSM and 99.99 % with ANN under optimal conditions. The ANN model demonstrated superior predictive accuracy (R² = 0.9984, MSE = 0.4004, RMSE = 0.6328) compared to RSM (R² = 0.9976, MSE = 0.5635, RMSE = 0.7507). Characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Brunauer–Emmet–Teller (BET) analysis, and Energy Dispersive X-ray Spectroscopy (EDX), confirmed the successful integration of zeolite onto activated carbon and the presence of active functional groups favorable for hydrocarbon adsorption. The Redlich-Peterson model was identified as the best fit for the experimental data, highlighting the biocomposite's potential as an effective adsorbent for treating produced water. These findings show the promising application of NaOH-modified AC-ZE biocomposites in achieving sustainable development goals.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.