Removal of Cr(Ⅵ) by continuous flow electrocoagulation reactor at controlled and uncontrolled initial pH conditions

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Nawid Ahmad Akhtar , Mehmet Kobya , Alireza Khataee
{"title":"Removal of Cr(Ⅵ) by continuous flow electrocoagulation reactor at controlled and uncontrolled initial pH conditions","authors":"Nawid Ahmad Akhtar ,&nbsp;Mehmet Kobya ,&nbsp;Alireza Khataee","doi":"10.1016/j.cherd.2025.01.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we studied the impact of various operating parameters, including reaction time (t), applied current (i), charge loading (q), initial pH, initial Cr concentration (mg/L), and wastewater flow rate (Q), on the removal of Cr (VI) from synthetic tap water. The investigation is conducted using Fe scrap anodes in a continuous flow electrocoagulation process (CFEC) with both controlled and uncontrolled initial pH conditions. Cr(VI) removal efficiency under controlled pH conditions was found to be 100 % under optimum conditions (t = 6 min, i = 1 A, pH = 2.5, q = 6.67 C/L or 4.145 F/m<sup>3</sup>, Q = 15 mL/min, and C<sub>i</sub> = 90 mg/L). In the case of uncontrolled pH conditions at optimum conditions (t = 12 min, i = 1 A, pH = 2.5, q = 13.33 C/L or 8.29 F/m<sup>3</sup>, Q = 15 mL/min, and C<sub>i</sub> = 90 mg/L), the Cr(VI) removal efficiency was found to be 100 %. The Cr(VI) removal capacity and the iron to chromium molar ratio at controlled pH were 775 mg Cr/g Fe and 1.198 mol/mol, and at uncontrolled pH were 387.7 mg Cr/g Fe and 2.395 mol/mol, respectively. Finally, comprehensive investigations were carried out on specific energy consumption and total operating costs. The SEM results show that the sludge particles under controlled and uncontrolled pHs are irregular, characterized by amorphous structure and wrinkled surfaces with small agglomerations.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"214 ","pages":"Pages 403-414"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225000152","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we studied the impact of various operating parameters, including reaction time (t), applied current (i), charge loading (q), initial pH, initial Cr concentration (mg/L), and wastewater flow rate (Q), on the removal of Cr (VI) from synthetic tap water. The investigation is conducted using Fe scrap anodes in a continuous flow electrocoagulation process (CFEC) with both controlled and uncontrolled initial pH conditions. Cr(VI) removal efficiency under controlled pH conditions was found to be 100 % under optimum conditions (t = 6 min, i = 1 A, pH = 2.5, q = 6.67 C/L or 4.145 F/m3, Q = 15 mL/min, and Ci = 90 mg/L). In the case of uncontrolled pH conditions at optimum conditions (t = 12 min, i = 1 A, pH = 2.5, q = 13.33 C/L or 8.29 F/m3, Q = 15 mL/min, and Ci = 90 mg/L), the Cr(VI) removal efficiency was found to be 100 %. The Cr(VI) removal capacity and the iron to chromium molar ratio at controlled pH were 775 mg Cr/g Fe and 1.198 mol/mol, and at uncontrolled pH were 387.7 mg Cr/g Fe and 2.395 mol/mol, respectively. Finally, comprehensive investigations were carried out on specific energy consumption and total operating costs. The SEM results show that the sludge particles under controlled and uncontrolled pHs are irregular, characterized by amorphous structure and wrinkled surfaces with small agglomerations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信