Tailoring asymmetrical piezoelectric responses in PVDF-TrFE composites for advanced energy storage applications

Yu-Liang Hsiao , Yen-Ting Chen , Chuan-Pu Liu
{"title":"Tailoring asymmetrical piezoelectric responses in PVDF-TrFE composites for advanced energy storage applications","authors":"Yu-Liang Hsiao ,&nbsp;Yen-Ting Chen ,&nbsp;Chuan-Pu Liu","doi":"10.1016/j.nwnano.2024.100065","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the phenomenon of asymmetrical piezoelectric output in Polyvinylidene Fluoride-Trifluoroethylene (PVDF-TrFE) based piezoelectric nanogenerators (PENGs), which have significant implications for improving the efficiency of energy harvesting devices, particularly in charging advanced energy storage applications. By leveraging the viscoelastic properties of PVDF-TrFE, we demonstrate pronounced asymmetry in piezoelectric output when the force frequency surpasses the polymer's natural recovery time, explicitly using an applied force of 60 N at frequencies ranging from 0.3 Hz to 1.25 Hz. These finding sheds light on the dynamic behavior of piezoelectric polymers under high-frequency stimuli and opens avenues for designing advanced energy harvesting devices.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100065"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the phenomenon of asymmetrical piezoelectric output in Polyvinylidene Fluoride-Trifluoroethylene (PVDF-TrFE) based piezoelectric nanogenerators (PENGs), which have significant implications for improving the efficiency of energy harvesting devices, particularly in charging advanced energy storage applications. By leveraging the viscoelastic properties of PVDF-TrFE, we demonstrate pronounced asymmetry in piezoelectric output when the force frequency surpasses the polymer's natural recovery time, explicitly using an applied force of 60 N at frequencies ranging from 0.3 Hz to 1.25 Hz. These finding sheds light on the dynamic behavior of piezoelectric polymers under high-frequency stimuli and opens avenues for designing advanced energy harvesting devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信