Basalt-silk fiber reinforced PLA composites: Effect of graphene fillers and stacking sequence

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Hasibur R. Hamim , Tanzim Hasan , Farhan Shahriar , Sazidur Rahman Chowdhury , Md.Anisur Rahman , Mohammad Nasim , Mohammad Ahsan Habib
{"title":"Basalt-silk fiber reinforced PLA composites: Effect of graphene fillers and stacking sequence","authors":"Hasibur R. Hamim ,&nbsp;Tanzim Hasan ,&nbsp;Farhan Shahriar ,&nbsp;Sazidur Rahman Chowdhury ,&nbsp;Md.Anisur Rahman ,&nbsp;Mohammad Nasim ,&nbsp;Mohammad Ahsan Habib","doi":"10.1016/j.jcomc.2025.100564","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the development of biocompatible composites using strong basalt fibers and ductile silk fibers, and a polylactic acid (PLA) matrix. Five distinct stacking sequences were fabricated via a replicable hand layup and vacuum bagging technique, with alternating layer specimens (ALT) further enhanced by the addition of graphene nanoplatelets (GNPs) at 3, 6, and 9 wt.% of the PLA matrix. The composites were characterized for tensile, flexural, impact, and interlaminar shear strengths, damping properties, electrical conductivity, moisture absorption, and morphological features. The ALT configuration exhibited superior performance, with its multi-layered structure effectively mitigating delamination. ALT composites without GNPs achieved the highest tensile strength (136.54 MPa), tensile modulus (3.42 GPa), interlaminar shear strength (0.48 MPa), impact energy (36.84 kJ/m²), and flexural strength (18.06 MPa), predominantly failing via delamination. SEM analysis identified the basalt fiber-PLA interface as a critical failure site. The incorporation of 6 wt.% GNP enhanced damping by 1.54 times, but the composites remained nonconductive due to graphene agglomeration and lack of a conductive network. These energy-absorbing, environmentally sustainable composites show promise for multifaceted applications with reduced ecological impact.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100564"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the development of biocompatible composites using strong basalt fibers and ductile silk fibers, and a polylactic acid (PLA) matrix. Five distinct stacking sequences were fabricated via a replicable hand layup and vacuum bagging technique, with alternating layer specimens (ALT) further enhanced by the addition of graphene nanoplatelets (GNPs) at 3, 6, and 9 wt.% of the PLA matrix. The composites were characterized for tensile, flexural, impact, and interlaminar shear strengths, damping properties, electrical conductivity, moisture absorption, and morphological features. The ALT configuration exhibited superior performance, with its multi-layered structure effectively mitigating delamination. ALT composites without GNPs achieved the highest tensile strength (136.54 MPa), tensile modulus (3.42 GPa), interlaminar shear strength (0.48 MPa), impact energy (36.84 kJ/m²), and flexural strength (18.06 MPa), predominantly failing via delamination. SEM analysis identified the basalt fiber-PLA interface as a critical failure site. The incorporation of 6 wt.% GNP enhanced damping by 1.54 times, but the composites remained nonconductive due to graphene agglomeration and lack of a conductive network. These energy-absorbing, environmentally sustainable composites show promise for multifaceted applications with reduced ecological impact.

Abstract Image

玄武岩-丝纤维增强PLA复合材料:石墨烯填料及堆积顺序的影响
本研究探索了以强玄武岩纤维、韧性丝纤维和聚乳酸(PLA)为基体的生物相容性复合材料的开发。通过可复制的手动叠加和真空袋装技术制备了五种不同的堆叠序列,通过在PLA基质中添加3、6和9 wt.%的石墨烯纳米片(GNPs)进一步增强了交替层样品(ALT)。表征了复合材料的拉伸、弯曲、冲击和层间剪切强度、阻尼性能、电导率、吸湿性和形态特征。ALT结构表现出优异的性能,其多层结构有效地减轻了分层。未添加GNPs的ALT复合材料抗拉强度最高(136.54 MPa),抗拉模量最高(3.42 GPa),层间剪切强度最高(0.48 MPa),冲击能最高(36.84 kJ/m²),抗折强度最高(18.06 MPa),主要是分层破坏。扫描电镜分析表明,玄武岩纤维-聚乳酸界面是一个关键的破坏部位。6 wt.% GNP的掺入使阻尼提高了1.54倍,但由于石墨烯团聚和缺乏导电网络,复合材料仍然不导电。这些吸能、环境可持续的复合材料有望在减少生态影响的情况下进行多方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信