Temporal stability analysis and thermal performance of non-Newtonian nanofluid over a shrinking wedge

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE
Ahmed Zeeshan , Muhammad Imran Khan , Aaqib Majeed , Mohammed Sh. Alhodaly
{"title":"Temporal stability analysis and thermal performance of non-Newtonian nanofluid over a shrinking wedge","authors":"Ahmed Zeeshan ,&nbsp;Muhammad Imran Khan ,&nbsp;Aaqib Majeed ,&nbsp;Mohammed Sh. Alhodaly","doi":"10.1016/j.jppr.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>The authors use a temporal stability analysis to examine the hydrodynamics performance of flow response quantities to investigate the impacts of pertained parameters on Casson nanofluid over a porous shrinking wedge. Thermal analysis is performed in the current flow with thermal radiation and the viscous dissipation effect. Boungiorno's model is used to develop flow equations for Casson nanofluid over a shrinking wedge. An efficient similarity variable is used to change flow equations (PDEs) into dimensionless ordinary differential equations (ODEs) and numerical results are evaluated using MATLAB built-in routine bvp4c. The consequence of this analysis reveals that the impact of active parameters on momentum, thermal and concentration boundary layer distributions are calculated. The dual nature of flow response output i.e. <span><math><mrow><mi>C</mi><msub><mi>f</mi><mi>x</mi></msub></mrow></math></span> is computed for various values of <span><math><mrow><msub><mi>β</mi><mi>T</mi></msub><mo>=</mo><mn>2.5</mn><mo>,</mo><mn>3.5</mn><mo>,</mo><mn>4.5</mn></mrow></math></span>, and the critical value is found to be <span><math><mrow><mo>−</mo><mn>1.544996</mn></mrow></math></span>, <span><math><mrow><mo>−</mo><mn>1.591</mn></mrow></math></span>, and <span><math><mrow><mo>−</mo><mn>1.66396</mn></mrow></math></span>. It is perceived that the first (upper branch) solution rises for the temperature profile when the value of thermal radiation is increased and it has the opposite impact on the concentration profile. Thermal radiation has the same critical value for <span><math><mrow><msub><mrow><mi>N</mi><mi>u</mi></mrow><mi>x</mi></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>S</mi><mi>h</mi></mrow><mi>x</mi></msub></mrow></math></span>. The perturbation scheme is applied to the boundary layer problem to obtain the eigenvalues problem. The unsteady solution <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mi>η</mi><mo>,</mo><mi>τ</mi></mrow><mo>)</mo></mrow></mrow></math></span> converges to steady solution <span><math><mrow><msub><mi>f</mi><mi>o</mi></msub><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>τ</mi><mo>→</mo><mi>∞</mi></mrow></math></span> when <span><math><mrow><mi>γ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. However, an unsteady solution <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mi>η</mi><mo>,</mo><mi>τ</mi></mrow><mo>)</mo></mrow></mrow></math></span> diverges to a steady solution <span><math><mrow><msub><mi>f</mi><mi>o</mi></msub><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>τ</mi><mo>→</mo><mi>∞</mi></mrow></math></span> when <span><math><mrow><mi>γ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>. It is found that the boundary layer thickness for the second (lower branch) solution is higher than the first (upper branch) solution. This investigation is the evidence that the first (upper branch) solution is stable and reliable.</div></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"13 4","pages":"Pages 586-596"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X24000774","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The authors use a temporal stability analysis to examine the hydrodynamics performance of flow response quantities to investigate the impacts of pertained parameters on Casson nanofluid over a porous shrinking wedge. Thermal analysis is performed in the current flow with thermal radiation and the viscous dissipation effect. Boungiorno's model is used to develop flow equations for Casson nanofluid over a shrinking wedge. An efficient similarity variable is used to change flow equations (PDEs) into dimensionless ordinary differential equations (ODEs) and numerical results are evaluated using MATLAB built-in routine bvp4c. The consequence of this analysis reveals that the impact of active parameters on momentum, thermal and concentration boundary layer distributions are calculated. The dual nature of flow response output i.e. Cfx is computed for various values of βT=2.5,3.5,4.5, and the critical value is found to be 1.544996, 1.591, and 1.66396. It is perceived that the first (upper branch) solution rises for the temperature profile when the value of thermal radiation is increased and it has the opposite impact on the concentration profile. Thermal radiation has the same critical value for Nux and Shx. The perturbation scheme is applied to the boundary layer problem to obtain the eigenvalues problem. The unsteady solution f(η,τ) converges to steady solution fo(η) for τ when γ0. However, an unsteady solution f(η,τ) diverges to a steady solution fo(η) for τ when γ<0. It is found that the boundary layer thickness for the second (lower branch) solution is higher than the first (upper branch) solution. This investigation is the evidence that the first (upper branch) solution is stable and reliable.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信