Instant formation of AlN whiskers and monocrystalline silicon with the separation of silicon and aluminum elements from 7 Å halloysite during thermite reduction

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Jing Zhang , Hao Zhang , Leibo Ji , Mingyi Huang , Qinfu Liu , JiaXing Li , XiaoYu Ding , Xi Xu
{"title":"Instant formation of AlN whiskers and monocrystalline silicon with the separation of silicon and aluminum elements from 7 Å halloysite during thermite reduction","authors":"Jing Zhang ,&nbsp;Hao Zhang ,&nbsp;Leibo Ji ,&nbsp;Mingyi Huang ,&nbsp;Qinfu Liu ,&nbsp;JiaXing Li ,&nbsp;XiaoYu Ding ,&nbsp;Xi Xu","doi":"10.1016/j.clay.2025.107711","DOIUrl":null,"url":null,"abstract":"<div><div>Natural halloysite have attracted great attention owing to their unique hollow tube and strong adsorption capacity. Nevertheless, the straightforward utilization of halloysite without further processing cannot fully discover its potential will lead to the waste of resources. In this study, an environmentally friendly method for the simultaneous separation of silica and aluminum from natural 7 Å halloysite via the aluminum thermal reduction method upon 700 °C under the system of aluminum powder and NaCl in N<sub>2</sub> atmosphere was developed, concurrently occurs with the structural transformation from the raw hollow tubular halloysite to AIN whiskers and monocrystalline silicon droplet tips was observed. The formation of AlN whiskers can be concluded as three steps: (1) the reduction of Si<sup>4+</sup> in Si<img>O tetrahedron into Si<sup>0</sup> atoms; (2) the separation of silicon and aluminum in the 1:1 meta-halloysite layer and the Si<sup>0</sup> atoms transportation to the end of whisker rod to form the monocrystalline silicon microsphere; (3) the formation of AlN whiskers by the replacement of the remaining oxygen atoms in the aluminum‑oxygen octahedra. This in-situ replacement of oxygen atoms by nitrogen atoms in the Al<img>O octahedron of tubular meta-halloysite plays a pivotal role in decreasing the reaction temperature. This work provides a novel idea and opens up a new technical route to prepare aluminum nitride and monocrystalline silicon with green efficiency and low cost.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"267 ","pages":"Article 107711"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016913172500016X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natural halloysite have attracted great attention owing to their unique hollow tube and strong adsorption capacity. Nevertheless, the straightforward utilization of halloysite without further processing cannot fully discover its potential will lead to the waste of resources. In this study, an environmentally friendly method for the simultaneous separation of silica and aluminum from natural 7 Å halloysite via the aluminum thermal reduction method upon 700 °C under the system of aluminum powder and NaCl in N2 atmosphere was developed, concurrently occurs with the structural transformation from the raw hollow tubular halloysite to AIN whiskers and monocrystalline silicon droplet tips was observed. The formation of AlN whiskers can be concluded as three steps: (1) the reduction of Si4+ in SiO tetrahedron into Si0 atoms; (2) the separation of silicon and aluminum in the 1:1 meta-halloysite layer and the Si0 atoms transportation to the end of whisker rod to form the monocrystalline silicon microsphere; (3) the formation of AlN whiskers by the replacement of the remaining oxygen atoms in the aluminum‑oxygen octahedra. This in-situ replacement of oxygen atoms by nitrogen atoms in the AlO octahedron of tubular meta-halloysite plays a pivotal role in decreasing the reaction temperature. This work provides a novel idea and opens up a new technical route to prepare aluminum nitride and monocrystalline silicon with green efficiency and low cost.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
文献相关原料
公司名称
产品信息
阿拉丁
Aluminum powder (Al)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信