Guohua Fan , Jinke Song , Yanan Tang , Xiaoting Song , Yao Liu
{"title":"Boosting dielectric constant of laminated composites by involving an epsilon-negative layer","authors":"Guohua Fan , Jinke Song , Yanan Tang , Xiaoting Song , Yao Liu","doi":"10.1016/j.surfin.2025.105814","DOIUrl":null,"url":null,"abstract":"<div><div>Dielectric modulation is arresting in electrical and electronic fields, and high-<em>k</em> is particularly important in applications like energy conversion and pulse power supply. Herein, an innovative strategy that different from conventional practices was adopted to boost the dielectric constant of PVDF-based dielectrics via involving an epsilon-negative layer in the laminates. The epsilon-negative layer was obtained based on the plasmonic state in percolating graphene networks. After stacking with the epsilon-positive layer containing core-shell BaTiO<sub>3</sub>@SiO<sub>2</sub> fillers, dielectric constant of the laminated composites was improved, and it increased constantly with the increasing thickness ratio of the epsilon-negative layer. It's ascertained the boost in dielectric constant was related to the multiple interfacial polarizations inside the layered composites, and the dielectric loss was suppressed by the low loss epsilon-positive layer. Therefore, synergism of epsilon-negative and positive layers in the enhancement of dielectric performance was elucidated, which developed a new avenue to obtain high-<em>k</em> dielectrics by the means of laminated composites.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"58 ","pages":"Article 105814"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246802302500077X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectric modulation is arresting in electrical and electronic fields, and high-k is particularly important in applications like energy conversion and pulse power supply. Herein, an innovative strategy that different from conventional practices was adopted to boost the dielectric constant of PVDF-based dielectrics via involving an epsilon-negative layer in the laminates. The epsilon-negative layer was obtained based on the plasmonic state in percolating graphene networks. After stacking with the epsilon-positive layer containing core-shell BaTiO3@SiO2 fillers, dielectric constant of the laminated composites was improved, and it increased constantly with the increasing thickness ratio of the epsilon-negative layer. It's ascertained the boost in dielectric constant was related to the multiple interfacial polarizations inside the layered composites, and the dielectric loss was suppressed by the low loss epsilon-positive layer. Therefore, synergism of epsilon-negative and positive layers in the enhancement of dielectric performance was elucidated, which developed a new avenue to obtain high-k dielectrics by the means of laminated composites.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)