Residual stiffness and strength analysis of fatigue behavior in a 3D-printed honeycomb structure of continuous glass fiber-reinforced polylactic acid (PLA) composite

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Hussain Gharehbaghi, AmirMohammad Shojaei, Mohammad Sadeghzadeh, Amin Farrokhabadi
{"title":"Residual stiffness and strength analysis of fatigue behavior in a 3D-printed honeycomb structure of continuous glass fiber-reinforced polylactic acid (PLA) composite","authors":"Hussain Gharehbaghi,&nbsp;AmirMohammad Shojaei,&nbsp;Mohammad Sadeghzadeh,&nbsp;Amin Farrokhabadi","doi":"10.1016/j.jcomc.2024.100552","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the fatigue behavior of composite honeycomb structures fabricated using the fused filament fabrication (FFF) technique with a polylactic acid (PLA) matrix and continuous glass fiber reinforcement. Fatigue testing was conducted at stress levels of 55 %, 65 %, and 75 % of the ultimate tensile strength (UTS) to develop S-N curves. All samples were fatigue tested in cyclic tension with a load ratio of R = 0.05. Additionally, the residual stiffness and residual strength of the honeycombs were evaluated at 30 %, 60 %, and 90 % of their average fatigue life. Results indicate that incorporating continuous glass fibers significantly enhances the fatigue life of the PLA honeycomb structures under cyclic tension loading. The fracture surfaces of the specimens were analyzed using scanning electron microscopy (SEM), revealing failure modes similar to those of traditionally manufactured composite honeycombs. The study underscores the potential of FFF in producing engineered composite honeycombs with superior fatigue properties, making them suitable for various high-load applications. The findings also highlight the importance of understanding the residual mechanical properties to predict the long-term performance and reliability of these materials in practical applications.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100552"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266668202400121X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the fatigue behavior of composite honeycomb structures fabricated using the fused filament fabrication (FFF) technique with a polylactic acid (PLA) matrix and continuous glass fiber reinforcement. Fatigue testing was conducted at stress levels of 55 %, 65 %, and 75 % of the ultimate tensile strength (UTS) to develop S-N curves. All samples were fatigue tested in cyclic tension with a load ratio of R = 0.05. Additionally, the residual stiffness and residual strength of the honeycombs were evaluated at 30 %, 60 %, and 90 % of their average fatigue life. Results indicate that incorporating continuous glass fibers significantly enhances the fatigue life of the PLA honeycomb structures under cyclic tension loading. The fracture surfaces of the specimens were analyzed using scanning electron microscopy (SEM), revealing failure modes similar to those of traditionally manufactured composite honeycombs. The study underscores the potential of FFF in producing engineered composite honeycombs with superior fatigue properties, making them suitable for various high-load applications. The findings also highlight the importance of understanding the residual mechanical properties to predict the long-term performance and reliability of these materials in practical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信