Legionella pneumophila response to shifts in biofilm structure mediated by hydrodynamics

IF 4.9 Q1 MICROBIOLOGY
Ana Rosa Silva , C. William Keevil , Ana Pereira
{"title":"Legionella pneumophila response to shifts in biofilm structure mediated by hydrodynamics","authors":"Ana Rosa Silva ,&nbsp;C. William Keevil ,&nbsp;Ana Pereira","doi":"10.1016/j.bioflm.2025.100258","DOIUrl":null,"url":null,"abstract":"<div><div>Preventing legionellosis in water systems demands effective hydrodynamic management and biofilm mitigation. This study investigates the complex relationship between hydrodynamics (80 RPM and stagnation), biofilm mesoscale structure and <em>Legionella pneumophila</em> colonization, by addressing three key questions: (1) How do low flow <em>vs</em> stagnation conditions affect biofilm response to <em>L. pneumophila</em> colonization?, (2) How do biofilm structural variations mediate <em>L. pneumophila</em> migration across the biofilm?, and (3) Can specific hydrodynamic conditions trigger <em>L. pneumophila</em> entrance in a viable but nonculturable (VBNC) state? It was found that <em>Pseudomonas fluorescens</em> biofilms exhibit different responses to <em>L. pneumophila</em> based on the prevailing hydrodynamic conditions. While biofilm thickness and porosity decreased under shear (80 RPM), thickness tends to significantly increase when pre-established 80 RPM-grown biofilms are set to stagnation upon <em>L. pneumophila</em> spiking. Imposing stagnation after the spiking also seemed to accelerate <em>Legionella</em> migration towards the bottom of the biofilm. Water structures in the biofilm seem to be key to <em>Legionella</em> migration across the biofilm. Finally, shear conditions favoured the transition of <em>L. pneumophila</em> to VBNC states (∼94 %), despite the high viable cell counts (∼8 log<sub>10</sub> CFU/cm<sup>2</sup>) found throughout the experiments. This research highlights the increased risk posed by biofilms and stagnation, emphasizing the importance of understanding the mechanisms that govern <em>Legionella</em> behaviour in diverse biofilm environments. These insights are crucial for developing more effective monitoring and prevention strategies in water systems.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100258"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207525000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Preventing legionellosis in water systems demands effective hydrodynamic management and biofilm mitigation. This study investigates the complex relationship between hydrodynamics (80 RPM and stagnation), biofilm mesoscale structure and Legionella pneumophila colonization, by addressing three key questions: (1) How do low flow vs stagnation conditions affect biofilm response to L. pneumophila colonization?, (2) How do biofilm structural variations mediate L. pneumophila migration across the biofilm?, and (3) Can specific hydrodynamic conditions trigger L. pneumophila entrance in a viable but nonculturable (VBNC) state? It was found that Pseudomonas fluorescens biofilms exhibit different responses to L. pneumophila based on the prevailing hydrodynamic conditions. While biofilm thickness and porosity decreased under shear (80 RPM), thickness tends to significantly increase when pre-established 80 RPM-grown biofilms are set to stagnation upon L. pneumophila spiking. Imposing stagnation after the spiking also seemed to accelerate Legionella migration towards the bottom of the biofilm. Water structures in the biofilm seem to be key to Legionella migration across the biofilm. Finally, shear conditions favoured the transition of L. pneumophila to VBNC states (∼94 %), despite the high viable cell counts (∼8 log10 CFU/cm2) found throughout the experiments. This research highlights the increased risk posed by biofilms and stagnation, emphasizing the importance of understanding the mechanisms that govern Legionella behaviour in diverse biofilm environments. These insights are crucial for developing more effective monitoring and prevention strategies in water systems.

Abstract Image

嗜肺军团菌对流体动力学介导的生物膜结构变化的响应
预防水系统中的军团菌病需要有效的流体动力学管理和生物膜缓解。本研究探讨了流体力学(80 RPM和停滞)、生物膜中尺度结构和嗜肺军团菌定植之间的复杂关系,通过解决三个关键问题:(1)低流量和停滞条件如何影响生物膜对嗜肺军团菌定植的反应?(2)生物膜结构变化如何介导嗜肺乳杆菌在生物膜中的迁移?(3)特定的流体动力条件是否会触发嗜肺乳杆菌在可存活但不可培养(VBNC)状态下进入?研究发现,荧光假单胞菌生物膜对嗜肺乳杆菌的反应因水动力条件的不同而不同。虽然生物膜厚度和孔隙率在剪切(80 RPM)下下降,但当预先建立的80 RPM生长的生物膜在嗜肺乳杆菌穗化时停滞时,厚度有显著增加的趋势。在峰值后施加停滞似乎也加速了军团菌向生物膜底部的迁移。生物膜中的水结构似乎是军团菌跨生物膜迁移的关键。最后,剪切条件有利于嗜肺乳杆菌向VBNC状态转变(~ 94%),尽管在整个实验中发现了高活细胞计数(~ 8 log10 CFU/cm2)。这项研究强调了生物膜和停滞带来的风险增加,强调了理解在不同生物膜环境中控制军团菌行为的机制的重要性。这些见解对于在水系统中制定更有效的监测和预防战略至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信