Modeling the determinants of attrition in a two-stage epilepsy prevalence survey in Nairobi using machine learning

Daniel M. Mwanga , Isaac C. Kipchirchir , George O. Muhua , Charles R. Newton , Damazo T. Kadengye
{"title":"Modeling the determinants of attrition in a two-stage epilepsy prevalence survey in Nairobi using machine learning","authors":"Daniel M. Mwanga ,&nbsp;Isaac C. Kipchirchir ,&nbsp;George O. Muhua ,&nbsp;Charles R. Newton ,&nbsp;Damazo T. Kadengye","doi":"10.1016/j.gloepi.2025.100183","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Attrition is a challenge in parameter estimation in both longitudinal and multi-stage cross-sectional studies. Here, we examine utility of machine learning to predict attrition and identify associated factors in a two-stage population-based epilepsy prevalence study in Nairobi.</div></div><div><h3>Methods</h3><div>All individuals in the Nairobi Urban Health and Demographic Surveillance System (NUHDSS) (Korogocho and Viwandani) were screened for epilepsy in two stages. Attrition was defined as probable epilepsy cases identified at stage-I but who did not attend stage-II (neurologist assessment). Categorical variables were one-hot encoded, class imbalance was addressed using synthetic minority over-sampling technique (SMOTE) and numeric variables were scaled and centered. The dataset was split into training and testing sets (7:3 ratio), and seven machine learning models, including the ensemble Super Learner, were trained. Hyperparameters were tuned using 10-fold cross-validation, and model performance evaluated using metrics like Area under the curve (AUC), accuracy, Brier score and F1 score over 500 bootstrap samples of the test data.</div></div><div><h3>Results</h3><div>Random forest (AUC = 0.98, accuracy = 0.95, Brier score = 0.06, and F1 = 0.94), extreme gradient boost (XGB) (AUC = 0.96, accuracy = 0.91, Brier score = 0.08, F1 = 0.90) and support vector machine (SVM) (AUC = 0.93, accuracy = 0.93, Brier score = 0.07, F1 = 0.92) were the best performing models (base learners). Ensemble Super Learner had similarly high performance. Important predictors of attrition included proximity to industrial areas, male gender, employment, education, smaller households, and a history of complex partial seizures.</div></div><div><h3>Conclusion</h3><div>These findings can aid researchers plan targeted mobilization for scheduled clinical appointments to improve follow-up rates. These findings will inform development of a web-based algorithm to predict attrition risk and aid in targeted follow-up efforts in similar studies.</div></div>","PeriodicalId":36311,"journal":{"name":"Global Epidemiology","volume":"9 ","pages":"Article 100183"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259011332500001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Attrition is a challenge in parameter estimation in both longitudinal and multi-stage cross-sectional studies. Here, we examine utility of machine learning to predict attrition and identify associated factors in a two-stage population-based epilepsy prevalence study in Nairobi.

Methods

All individuals in the Nairobi Urban Health and Demographic Surveillance System (NUHDSS) (Korogocho and Viwandani) were screened for epilepsy in two stages. Attrition was defined as probable epilepsy cases identified at stage-I but who did not attend stage-II (neurologist assessment). Categorical variables were one-hot encoded, class imbalance was addressed using synthetic minority over-sampling technique (SMOTE) and numeric variables were scaled and centered. The dataset was split into training and testing sets (7:3 ratio), and seven machine learning models, including the ensemble Super Learner, were trained. Hyperparameters were tuned using 10-fold cross-validation, and model performance evaluated using metrics like Area under the curve (AUC), accuracy, Brier score and F1 score over 500 bootstrap samples of the test data.

Results

Random forest (AUC = 0.98, accuracy = 0.95, Brier score = 0.06, and F1 = 0.94), extreme gradient boost (XGB) (AUC = 0.96, accuracy = 0.91, Brier score = 0.08, F1 = 0.90) and support vector machine (SVM) (AUC = 0.93, accuracy = 0.93, Brier score = 0.07, F1 = 0.92) were the best performing models (base learners). Ensemble Super Learner had similarly high performance. Important predictors of attrition included proximity to industrial areas, male gender, employment, education, smaller households, and a history of complex partial seizures.

Conclusion

These findings can aid researchers plan targeted mobilization for scheduled clinical appointments to improve follow-up rates. These findings will inform development of a web-based algorithm to predict attrition risk and aid in targeted follow-up efforts in similar studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Epidemiology
Global Epidemiology Medicine-Infectious Diseases
CiteScore
5.00
自引率
0.00%
发文量
22
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信