Case study on SAF emissions from air travel considering emissions modeling impact

IF 3.9 Q2 TRANSPORTATION
Hakkı Aksoy , María García Domene , Parthiban Loganathan , Simon Blakey , Elias Zea , Ricardo Vinuesa , Evelyn Otero
{"title":"Case study on SAF emissions from air travel considering emissions modeling impact","authors":"Hakkı Aksoy ,&nbsp;María García Domene ,&nbsp;Parthiban Loganathan ,&nbsp;Simon Blakey ,&nbsp;Elias Zea ,&nbsp;Ricardo Vinuesa ,&nbsp;Evelyn Otero","doi":"10.1016/j.trip.2025.101341","DOIUrl":null,"url":null,"abstract":"<div><div>The environmental impact of air travel, largely driven by fossil-fuel consumption, remains a critical subject of debate. Addressing this challenge requires immediately adopting sustainable practices to mitigate its environmental footprint. While hydrogen and hybrid-electric propulsion technologies show promise for the future, current efforts focus on Sustainable Aviation Fuels (SAF) as a viable near-term solution to reduce aviation emissions while ensuring compatibility with existing aviation infrastructure. This paper examines the environmental impact of air travel, focusing on the emissions associated with conventional fuel and SAF. Using two methodologies, namely the subsonic fuel flow method (SF2) and an improved version of it, the emissions corrected subsonic fuel flow method (EC-SF2), non-CO<sub>2</sub> emissions trends are analyzed along a flight trajectory from Stockholm to Bordeaux. The comparison between the two methods underscores the importance of accurate emission modeling, particularly for SAF correction on emission index. The SF2 method reveals that SAF fuels with higher calorific value than conventional fuel increased total HC and CO emissions while decreasing NO<sub>x</sub> emissions. Conversely, the EC-SF2 method resulted in a more homogeneous emissions reduction trend. Our proposed methodology, which corrects both fuel flow and emission index based on SAF-specific data, could, therefore, offer a more reliable estimation of emissions behavior for SAF. These findings highlight the sensitivity of emissions modeling on environmental assessment.</div></div>","PeriodicalId":36621,"journal":{"name":"Transportation Research Interdisciplinary Perspectives","volume":"29 ","pages":"Article 101341"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Interdisciplinary Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259019822500020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The environmental impact of air travel, largely driven by fossil-fuel consumption, remains a critical subject of debate. Addressing this challenge requires immediately adopting sustainable practices to mitigate its environmental footprint. While hydrogen and hybrid-electric propulsion technologies show promise for the future, current efforts focus on Sustainable Aviation Fuels (SAF) as a viable near-term solution to reduce aviation emissions while ensuring compatibility with existing aviation infrastructure. This paper examines the environmental impact of air travel, focusing on the emissions associated with conventional fuel and SAF. Using two methodologies, namely the subsonic fuel flow method (SF2) and an improved version of it, the emissions corrected subsonic fuel flow method (EC-SF2), non-CO2 emissions trends are analyzed along a flight trajectory from Stockholm to Bordeaux. The comparison between the two methods underscores the importance of accurate emission modeling, particularly for SAF correction on emission index. The SF2 method reveals that SAF fuels with higher calorific value than conventional fuel increased total HC and CO emissions while decreasing NOx emissions. Conversely, the EC-SF2 method resulted in a more homogeneous emissions reduction trend. Our proposed methodology, which corrects both fuel flow and emission index based on SAF-specific data, could, therefore, offer a more reliable estimation of emissions behavior for SAF. These findings highlight the sensitivity of emissions modeling on environmental assessment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Research Interdisciplinary Perspectives
Transportation Research Interdisciplinary Perspectives Engineering-Automotive Engineering
CiteScore
12.90
自引率
0.00%
发文量
185
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信