Covalent organic frameworks (COFs) for CO2 utilizations

Maha H. Alenazi , Aasif Helal , Mohd Yusuf Khan , Amjad Khalil , Abuzar Khan , Muhammad Usman , Md. Hasan Zahir
{"title":"Covalent organic frameworks (COFs) for CO2 utilizations","authors":"Maha H. Alenazi ,&nbsp;Aasif Helal ,&nbsp;Mohd Yusuf Khan ,&nbsp;Amjad Khalil ,&nbsp;Abuzar Khan ,&nbsp;Muhammad Usman ,&nbsp;Md. Hasan Zahir","doi":"10.1016/j.ccst.2025.100365","DOIUrl":null,"url":null,"abstract":"<div><div>The levels of greenhouse gases, and in particular, carbon dioxide (CO<sub>2</sub>) emissions due to anthropogenic activities, have greatly inflated, and this has contributed to climate fluctuation and global warming. In 2023, the CO<sub>2</sub> emissions went up by 1.1 % to arrive at a figure of 37.4 g/t. There is now a good prospect of converting CO<sub>2</sub> into other products, thanks to the active research into the use of COFs for CO<sub>2</sub> capture and conversion. COFs as a new class of porous crystalline materials are synthesized by organic units linked like benzene and triazine, sanines, and porphyrines. Production procedures may result in COFs impurities, therefore, an activation paragraph is required to outweigh the deficiency and improve the efficiency of the COFs. Even though it is difficult to achieve these characteristics in humid conditions where temperature and pressure are in the normal operating conditions of COFs, their low density, highly porous surface areas, large pore volume, and adjustable pore size, all vice versa are effective in carbon capture. This review focuses on the fact that COFs' structural properties are vital to the success of the CO<sub>2</sub> capture and storage processes. It also assesses the possibility of creating cyclic carbonates or other organic compounds to solve environmental issues effectively.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100365"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The levels of greenhouse gases, and in particular, carbon dioxide (CO2) emissions due to anthropogenic activities, have greatly inflated, and this has contributed to climate fluctuation and global warming. In 2023, the CO2 emissions went up by 1.1 % to arrive at a figure of 37.4 g/t. There is now a good prospect of converting CO2 into other products, thanks to the active research into the use of COFs for CO2 capture and conversion. COFs as a new class of porous crystalline materials are synthesized by organic units linked like benzene and triazine, sanines, and porphyrines. Production procedures may result in COFs impurities, therefore, an activation paragraph is required to outweigh the deficiency and improve the efficiency of the COFs. Even though it is difficult to achieve these characteristics in humid conditions where temperature and pressure are in the normal operating conditions of COFs, their low density, highly porous surface areas, large pore volume, and adjustable pore size, all vice versa are effective in carbon capture. This review focuses on the fact that COFs' structural properties are vital to the success of the CO2 capture and storage processes. It also assesses the possibility of creating cyclic carbonates or other organic compounds to solve environmental issues effectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信