A novel insight into CO2-cured cement modified by ultrasonic carbonated waste incineration fly ash: Mechanical properties, carbon sequestration, and heavy metals immobilization

Jie Chen, Zheming Zhang, Yizhe Shen, Hailong Li, Xiaoqing Lin, Xiaodong Li, Jianhua Yan
{"title":"A novel insight into CO2-cured cement modified by ultrasonic carbonated waste incineration fly ash: Mechanical properties, carbon sequestration, and heavy metals immobilization","authors":"Jie Chen,&nbsp;Zheming Zhang,&nbsp;Yizhe Shen,&nbsp;Hailong Li,&nbsp;Xiaoqing Lin,&nbsp;Xiaodong Li,&nbsp;Jianhua Yan","doi":"10.1016/j.ccst.2025.100368","DOIUrl":null,"url":null,"abstract":"<div><div>As a typical alkaline hazardous waste, municipal solid waste incineration fly ash is used for CO<sub>2</sub> storage and cement supplementary material, contributing to carbon emission reduction and hazardous waste management. This study proposed a new idea of using ultrasonic accelerated carbonated fly ash (UFA) to modify CO<sub>2</sub> mineralization cured cement, aimed at recycling FA while enhancing cement performance. Incorporating small amounts of UFA (5% and 10%) significantly improved the mechanical properties of cement paste, with the optimal inclusion of 10% UFA yielding a compressive strength of 50.23 MPa—higher than that of pure cement (41.04 MPa). The UFA contributed to pore filling and acts as a nucleation site for CO<sub>2</sub> mineralization, forming stable flaky calcite and thus enhancing the microstructure. Conversely, higher UFA contents (20% and 50%) reduced performance due to a dilution effect that impaired the hydration product structure. Kinetic analysis via the Avrami-Erofeev model revealed that CO<sub>2</sub> diffusion and crystal growth primarily control the mineralization reaction. The 50%UFA cement paste exhibited the greatest carbon fixation depth, with a carbon sequestration capacity of 186 g-CO<sub>2</sub>/kg-PC. This was attributed to its enhanced porosity and pore size, which facilitated CO<sub>2</sub> diffusion. The 10%UFA cement paste, which had the highest compressive strength, also achieved a carbon sequestration capacity of 158 g-CO<sub>2</sub>/kg-PC, surpassing the 144 g-CO<sub>2</sub>/kg-PC of the pure cement paste. Moreover, the proposed UFA-modified CO<sub>2</sub> mineralization cement displayed a low risk of heavy metal leaching under alkaline or acidic environment.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100368"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a typical alkaline hazardous waste, municipal solid waste incineration fly ash is used for CO2 storage and cement supplementary material, contributing to carbon emission reduction and hazardous waste management. This study proposed a new idea of using ultrasonic accelerated carbonated fly ash (UFA) to modify CO2 mineralization cured cement, aimed at recycling FA while enhancing cement performance. Incorporating small amounts of UFA (5% and 10%) significantly improved the mechanical properties of cement paste, with the optimal inclusion of 10% UFA yielding a compressive strength of 50.23 MPa—higher than that of pure cement (41.04 MPa). The UFA contributed to pore filling and acts as a nucleation site for CO2 mineralization, forming stable flaky calcite and thus enhancing the microstructure. Conversely, higher UFA contents (20% and 50%) reduced performance due to a dilution effect that impaired the hydration product structure. Kinetic analysis via the Avrami-Erofeev model revealed that CO2 diffusion and crystal growth primarily control the mineralization reaction. The 50%UFA cement paste exhibited the greatest carbon fixation depth, with a carbon sequestration capacity of 186 g-CO2/kg-PC. This was attributed to its enhanced porosity and pore size, which facilitated CO2 diffusion. The 10%UFA cement paste, which had the highest compressive strength, also achieved a carbon sequestration capacity of 158 g-CO2/kg-PC, surpassing the 144 g-CO2/kg-PC of the pure cement paste. Moreover, the proposed UFA-modified CO2 mineralization cement displayed a low risk of heavy metal leaching under alkaline or acidic environment.

Abstract Image

超声碳化垃圾焚烧粉煤灰改性二氧化碳固化水泥的新研究:机械性能、固碳和重金属固定化
城市生活垃圾焚烧粉煤灰作为一种典型的碱性危险废物,作为CO2储存和水泥补充材料,有助于减少碳排放和危险废物管理。本研究提出了利用超声加速碳化粉煤灰(UFA)改性CO2矿化固化水泥的新思路,目的是在提高水泥性能的同时回收利用UFA。掺入少量UFA(5%和10%)可显著改善水泥浆体的力学性能,10% UFA的最佳掺入量可产生50.23 MPa的抗压强度,高于纯水泥(41.04 MPa)。UFA有助于孔隙填充,并作为CO2矿化的成核位点,形成稳定的片状方解石,从而增强微观结构。相反,较高的UFA含量(20%和50%)由于稀释效应破坏了水化产物结构而降低了性能。Avrami-Erofeev模型的动力学分析表明,CO2扩散和晶体生长是矿化反应的主要控制因素。50%UFA水泥浆体固碳深度最大,固碳量为186 g-CO2/kg-PC。这是由于其孔隙度和孔径增大,有利于二氧化碳的扩散。10%UFA水泥浆体抗压强度最高,固碳能力达到158 g-CO2/kg-PC,超过了纯水泥浆体的144 g-CO2/kg-PC。此外,ufa改性CO2矿化水泥在碱性或酸性环境下重金属浸出风险较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信