Daciberg Lima Gonçalves , Bartira Maués , Daniel Vendrúscolo
{"title":"Nielsen fixed point theory for split n-valued maps on the Klein bottle","authors":"Daciberg Lima Gonçalves , Bartira Maués , Daniel Vendrúscolo","doi":"10.1016/j.topol.2024.109085","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we begin the study of <em>n</em>-valued maps on the Klein bottle, denoted by <em>K</em>, where we focus on the split ones. We provide an explicit description of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> (the <em>n</em>-th pure braid group of <em>K</em>) as an iterated semi-direct product of the form <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mo>⋊</mo></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo>(</mo><mo>⋯</mo><mo>⋊</mo><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mo>⋊</mo></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>)</mo><mo>)</mo></math></span>, where the <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>s</mi></math></span> are free groups on <em>i</em> letters. Given a split <em>n</em>-valued map <span><math><mi>Φ</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> its pointed homotopy class is determined by a pair of braids in <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. We also provide a formula for <span><math><mi>N</mi><mo>(</mo><mi>Φ</mi><mo>)</mo></math></span>, the Nielsen number of Φ, which is completely determined by two braids, which in turn also determine the homotopy classes of the functions <span><math><msubsup><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>s</mi></math></span>. If <span><math><mi>Φ</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></math></span> is a 2-valued map with <span><math><mi>N</mi><mo>(</mo><mi>Φ</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, we show that there exists at least one 2-valued map <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mo>{</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>}</mo></math></span>, such that <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is fixed point free and for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> it holds that <span><math><mo>[</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo><mo>=</mo><mo>[</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>]</mo></math></span>, where <span><math><mo>[</mo><mspace></mspace><mspace></mspace><mo>]</mo></math></span> denotes a pointed homotopy class of maps. Finally, we display an infinite family of pointed homotopy classes in <span><math><mo>[</mo><mi>K</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>]</mo></math></span>, such that <span><math><mi>N</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, for any <em>ϕ</em> in the family. Furthermore, the map from <span><math><mo>[</mo><mi>K</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>]</mo></math></span> to <span><math><mo>[</mo><mi>K</mi><mo>,</mo><mi>K</mi><mo>×</mo><mi>K</mi><mo>]</mo></math></span>, induced by the inclusion <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>→</mo><mi>K</mi><mo>×</mo><mi>K</mi></math></span>, takes this family to one single element in <span><math><mo>[</mo><mi>K</mi><mo>,</mo><mi>K</mi><mo>×</mo><mi>K</mi><mo>]</mo></math></span>. We do not know if these 2-valued maps of the family can be deformed to fixed point free maps.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109085"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002700","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we begin the study of n-valued maps on the Klein bottle, denoted by K, where we focus on the split ones. We provide an explicit description of (the n-th pure braid group of K) as an iterated semi-direct product of the form , where the are free groups on i letters. Given a split n-valued map its pointed homotopy class is determined by a pair of braids in . We also provide a formula for , the Nielsen number of Φ, which is completely determined by two braids, which in turn also determine the homotopy classes of the functions . If is a 2-valued map with , we show that there exists at least one 2-valued map , such that is fixed point free and for it holds that , where denotes a pointed homotopy class of maps. Finally, we display an infinite family of pointed homotopy classes in , such that , for any ϕ in the family. Furthermore, the map from to , induced by the inclusion , takes this family to one single element in . We do not know if these 2-valued maps of the family can be deformed to fixed point free maps.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.