Nielsen fixed point theory for split n-valued maps on the Klein bottle

IF 0.6 4区 数学 Q3 MATHEMATICS
Daciberg Lima Gonçalves , Bartira Maués , Daniel Vendrúscolo
{"title":"Nielsen fixed point theory for split n-valued maps on the Klein bottle","authors":"Daciberg Lima Gonçalves ,&nbsp;Bartira Maués ,&nbsp;Daniel Vendrúscolo","doi":"10.1016/j.topol.2024.109085","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we begin the study of <em>n</em>-valued maps on the Klein bottle, denoted by <em>K</em>, where we focus on the split ones. We provide an explicit description of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> (the <em>n</em>-th pure braid group of <em>K</em>) as an iterated semi-direct product of the form <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mo>⋊</mo></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo>(</mo><mo>⋯</mo><mo>⋊</mo><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mo>⋊</mo></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>)</mo><mo>)</mo></math></span>, where the <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>s</mi></math></span> are free groups on <em>i</em> letters. Given a split <em>n</em>-valued map <span><math><mi>Φ</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> its pointed homotopy class is determined by a pair of braids in <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. We also provide a formula for <span><math><mi>N</mi><mo>(</mo><mi>Φ</mi><mo>)</mo></math></span>, the Nielsen number of Φ, which is completely determined by two braids, which in turn also determine the homotopy classes of the functions <span><math><msubsup><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>s</mi></math></span>. If <span><math><mi>Φ</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></math></span> is a 2-valued map with <span><math><mi>N</mi><mo>(</mo><mi>Φ</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, we show that there exists at least one 2-valued map <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mo>{</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>}</mo></math></span>, such that <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is fixed point free and for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> it holds that <span><math><mo>[</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo><mo>=</mo><mo>[</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>]</mo></math></span>, where <span><math><mo>[</mo><mspace></mspace><mspace></mspace><mo>]</mo></math></span> denotes a pointed homotopy class of maps. Finally, we display an infinite family of pointed homotopy classes in <span><math><mo>[</mo><mi>K</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>]</mo></math></span>, such that <span><math><mi>N</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, for any <em>ϕ</em> in the family. Furthermore, the map from <span><math><mo>[</mo><mi>K</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>]</mo></math></span> to <span><math><mo>[</mo><mi>K</mi><mo>,</mo><mi>K</mi><mo>×</mo><mi>K</mi><mo>]</mo></math></span>, induced by the inclusion <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>→</mo><mi>K</mi><mo>×</mo><mi>K</mi></math></span>, takes this family to one single element in <span><math><mo>[</mo><mi>K</mi><mo>,</mo><mi>K</mi><mo>×</mo><mi>K</mi><mo>]</mo></math></span>. We do not know if these 2-valued maps of the family can be deformed to fixed point free maps.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109085"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002700","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we begin the study of n-valued maps on the Klein bottle, denoted by K, where we focus on the split ones. We provide an explicit description of Pn(K) (the n-th pure braid group of K) as an iterated semi-direct product of the form Fnθn1((F2θ1π1(K))), where the Fis are free groups on i letters. Given a split n-valued map Φ={f1,,fn} its pointed homotopy class is determined by a pair of braids in Pn(K). We also provide a formula for N(Φ), the Nielsen number of Φ, which is completely determined by two braids, which in turn also determine the homotopy classes of the functions fis. If Φ={f1,f2} is a 2-valued map with N(Φ)=0, we show that there exists at least one 2-valued map Φ={f1,f2}, such that Φ is fixed point free and for i=1,2 it holds that [fi]=[fi], where [] denotes a pointed homotopy class of maps. Finally, we display an infinite family of pointed homotopy classes in [K,F2(K)], such that N(ϕ)=0, for any ϕ in the family. Furthermore, the map from [K,F2(K)] to [K,K×K], induced by the inclusion F2(K)K×K, takes this family to one single element in [K,K×K]. We do not know if these 2-valued maps of the family can be deformed to fixed point free maps.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信