Porous organic cage separation membranes: Exploratory journey from preparation to application

Zhihao Song , Ying Wang , Zhiyuan Zha , Zhi Wang , Song Zhao
{"title":"Porous organic cage separation membranes: Exploratory journey from preparation to application","authors":"Zhihao Song ,&nbsp;Ying Wang ,&nbsp;Zhiyuan Zha ,&nbsp;Zhi Wang ,&nbsp;Song Zhao","doi":"10.1016/j.advmem.2024.100125","DOIUrl":null,"url":null,"abstract":"<div><div>Porous organic cages (POCs) represent a novel class of low-density crystalline materials that exhibit distinctive pores comparable to those observed in three-dimensional extended network materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs). Owing to their adjustable pore sizes, high specific surface areas, and discrete molecular structures, POCs exhibit excellent solution dispersibility and processability, thereby providing a broad spectrum of potential strategies for the design and fabrication of POC separation membranes. This review presents a comprehensive and systematic summary of the recent research progress in the preparation techniques and applications of POC separation membranes. We summarize a comprehensive overview of preparation strategies for POC separation membranes, including physical blending, spin coating, and interfacial polymerization, and analyze their advantages and limitations. Recent developments in the separation applications of POC separation membranes are highlighted, such as gas separation, ion separation and molecular separation, as well as current challenges and future development trends in this field, are briefly discussed. We anticipate that this review will offer a pertinent perspective to promote advancements in the development of advanced POC separation membranes, and be useful to researchers in related fields.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823424000368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Porous organic cages (POCs) represent a novel class of low-density crystalline materials that exhibit distinctive pores comparable to those observed in three-dimensional extended network materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs). Owing to their adjustable pore sizes, high specific surface areas, and discrete molecular structures, POCs exhibit excellent solution dispersibility and processability, thereby providing a broad spectrum of potential strategies for the design and fabrication of POC separation membranes. This review presents a comprehensive and systematic summary of the recent research progress in the preparation techniques and applications of POC separation membranes. We summarize a comprehensive overview of preparation strategies for POC separation membranes, including physical blending, spin coating, and interfacial polymerization, and analyze their advantages and limitations. Recent developments in the separation applications of POC separation membranes are highlighted, such as gas separation, ion separation and molecular separation, as well as current challenges and future development trends in this field, are briefly discussed. We anticipate that this review will offer a pertinent perspective to promote advancements in the development of advanced POC separation membranes, and be useful to researchers in related fields.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信