EVOH functionalized PE battery separator as the porous substrate for TFC organic solvent nanofiltration membranes

Guoke Zhao, Tian Zhong, Xinkai Li, Hao Yu, Guoyuan Pan, Yang Zhang, Yiqun Liu
{"title":"EVOH functionalized PE battery separator as the porous substrate for TFC organic solvent nanofiltration membranes","authors":"Guoke Zhao,&nbsp;Tian Zhong,&nbsp;Xinkai Li,&nbsp;Hao Yu,&nbsp;Guoyuan Pan,&nbsp;Yang Zhang,&nbsp;Yiqun Liu","doi":"10.1016/j.advmem.2025.100131","DOIUrl":null,"url":null,"abstract":"<div><div>Scholarly discourse surrounding the thin film composite organic solvent nanofiltration (TFC OSN) membrane field has largely been dominated by focusing on the optimization of the selective layer. However, this often leaves the porous support layer, with its innate solvent resistance, cost-effectiveness, and superior permeability, in the shadows. This study presents a novel OSN membrane utilizing a polyethylene (PE) battery separator as the porous substrate. The structural affinity between ethylene-vinyl alcohol and PE facilitates efficient hydrophilic modification, which allows for uniform and compact polyamide selective layer formation through interfacial polymerization. The HPE-NF-1.0 membrane exhibits rejections of 99.5 ​%, 96.7 ​%, 100 ​%, and 97.2 ​% for Methyl Orange, Rhodamine B, Congo red, and Rose Bengal, respectively. It also shows a solvent flux of 52.5 LMH in methanol and robust resistance against alcoholic solvents and DMF. Using PE as the porous substrate, we bypass intricate and time-demanding cross-linking processes and complex pore-preservation post-treatments, providing a simplified strategy for TFC OSN membrane fabrication.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scholarly discourse surrounding the thin film composite organic solvent nanofiltration (TFC OSN) membrane field has largely been dominated by focusing on the optimization of the selective layer. However, this often leaves the porous support layer, with its innate solvent resistance, cost-effectiveness, and superior permeability, in the shadows. This study presents a novel OSN membrane utilizing a polyethylene (PE) battery separator as the porous substrate. The structural affinity between ethylene-vinyl alcohol and PE facilitates efficient hydrophilic modification, which allows for uniform and compact polyamide selective layer formation through interfacial polymerization. The HPE-NF-1.0 membrane exhibits rejections of 99.5 ​%, 96.7 ​%, 100 ​%, and 97.2 ​% for Methyl Orange, Rhodamine B, Congo red, and Rose Bengal, respectively. It also shows a solvent flux of 52.5 LMH in methanol and robust resistance against alcoholic solvents and DMF. Using PE as the porous substrate, we bypass intricate and time-demanding cross-linking processes and complex pore-preservation post-treatments, providing a simplified strategy for TFC OSN membrane fabrication.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
文献相关原料
公司名称
产品信息
阿拉丁
NaCl
阿拉丁
MgCl2
阿拉丁
Na2SO4
阿拉丁
MgSO4
阿拉丁
trimesoyl chloride (TMC)
阿拉丁
piperazine (PIP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信