Patient's head position-dependent safety analysis of birdcage coil, loop array, and dipole array for applications at 300 MHz in magnetic resonance imaging based on hydrogen nuclei: Simulation study

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Eunwoo Lee , Taewoo Nam , Daniel Hernandez , Donghyuk Kim , Yeunchul Ryu , Yeji Han , Kyoung-Nam Kim
{"title":"Patient's head position-dependent safety analysis of birdcage coil, loop array, and dipole array for applications at 300 MHz in magnetic resonance imaging based on hydrogen nuclei: Simulation study","authors":"Eunwoo Lee ,&nbsp;Taewoo Nam ,&nbsp;Daniel Hernandez ,&nbsp;Donghyuk Kim ,&nbsp;Yeunchul Ryu ,&nbsp;Yeji Han ,&nbsp;Kyoung-Nam Kim","doi":"10.1016/j.net.2024.08.048","DOIUrl":null,"url":null,"abstract":"<div><div>The specific absorption rate (SAR) substantially contributes to the elevation of patient temperatures during magnetic resonance imaging (MRI) scans, potentially leading to tissue degeneration and damage. In particular, the relatively short wavelength of radio frequency (RF) used in ultra-high field (UHF)-MRI generates non-uniform RF excitation (|B<sub>1</sub><sup>+</sup>|) and electric (|E|)-fields within the body, with the potential to cause localized increases in tissue temperature. This study employs electromagnetic (EM) simulations to quantitatively assesses variations in SAR resulting from different patient's head positions across three types of RF coils (birdcage coil, loop array coil, and dipole array coil), frequently employed as transmission/reception (Tx/Rx) coils in 7 T MRI. Through analysis of 715 SAR values per RF coil, achieved by varying patient's head positions at 5 mm intervals within the maximum range of movement, the study shows substantial changes in SAR values averaged over 10 g of tissue (SAR<sub>10g</sub>). Notably, these changes reach a maximum difference of 339.89 % and 371.13 % in comparison to the iso-center (no change), concerning global- and local-SAR<sub>10g</sub>. Interestingly, the study identifies instances where SAR values surpass the standard SAR limit suggested by the safety guidelines, even when the distance between the RF coil and the patient exceeded 10 mm.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 2","pages":"Article 103179"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324004273","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The specific absorption rate (SAR) substantially contributes to the elevation of patient temperatures during magnetic resonance imaging (MRI) scans, potentially leading to tissue degeneration and damage. In particular, the relatively short wavelength of radio frequency (RF) used in ultra-high field (UHF)-MRI generates non-uniform RF excitation (|B1+|) and electric (|E|)-fields within the body, with the potential to cause localized increases in tissue temperature. This study employs electromagnetic (EM) simulations to quantitatively assesses variations in SAR resulting from different patient's head positions across three types of RF coils (birdcage coil, loop array coil, and dipole array coil), frequently employed as transmission/reception (Tx/Rx) coils in 7 T MRI. Through analysis of 715 SAR values per RF coil, achieved by varying patient's head positions at 5 mm intervals within the maximum range of movement, the study shows substantial changes in SAR values averaged over 10 g of tissue (SAR10g). Notably, these changes reach a maximum difference of 339.89 % and 371.13 % in comparison to the iso-center (no change), concerning global- and local-SAR10g. Interestingly, the study identifies instances where SAR values surpass the standard SAR limit suggested by the safety guidelines, even when the distance between the RF coil and the patient exceeded 10 mm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信