Numerical simulation of active magnetic regenerative refrigeration using Gyroid structured regenerator at room temperature

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Sotaro Nishioka, Hossein Sepehri-Amin, Akiko T․ Saito
{"title":"Numerical simulation of active magnetic regenerative refrigeration using Gyroid structured regenerator at room temperature","authors":"Sotaro Nishioka,&nbsp;Hossein Sepehri-Amin,&nbsp;Akiko T․ Saito","doi":"10.1016/j.ijrefrig.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>The packed sphere bed regenerator is often utilized in active magnetic regenerative refrigeration (AMRR) because of its high heat transfer coefficient. However, the complex flow between the spheres in this regenerator causes an undesirable high pressure drop. In this study, we propose to adopt the Gyroid structure as a regenerator, which has a more structural design flexibility and a smoother flow, resulting in a lower pressure drop. The basic characteristics of various Gyroid regenerators were investigated by numerical simulations taking into account of heat transfer coefficient, pressure drop, and thermal conductivity, for the purpose of applying such regenerator in the AMRR system. The result of AMRR simulation shows that the standard Gyroid regenerator reduces the pressure drop by 45% while maintaining the cooling performance. In addition, two modified Gyroid regenerators have succeeded in further reducing the pressure drop with small decrease in cooling performance. This study shows that the Gyroid regenerator can serve as a potential regenerator to improve the energy efficiency of the AMRR system.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"170 ","pages":"Pages 468-476"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724004079","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The packed sphere bed regenerator is often utilized in active magnetic regenerative refrigeration (AMRR) because of its high heat transfer coefficient. However, the complex flow between the spheres in this regenerator causes an undesirable high pressure drop. In this study, we propose to adopt the Gyroid structure as a regenerator, which has a more structural design flexibility and a smoother flow, resulting in a lower pressure drop. The basic characteristics of various Gyroid regenerators were investigated by numerical simulations taking into account of heat transfer coefficient, pressure drop, and thermal conductivity, for the purpose of applying such regenerator in the AMRR system. The result of AMRR simulation shows that the standard Gyroid regenerator reduces the pressure drop by 45% while maintaining the cooling performance. In addition, two modified Gyroid regenerators have succeeded in further reducing the pressure drop with small decrease in cooling performance. This study shows that the Gyroid regenerator can serve as a potential regenerator to improve the energy efficiency of the AMRR system.
室温下陀螺结构蓄热器主动磁蓄冷的数值模拟
填料球床蓄热器由于具有较高的传热系数,常用于主动磁蓄热制冷。然而,再生器中球体之间复杂的流动导致了不希望出现的高压降。在本研究中,我们提出采用Gyroid结构作为回热器,它具有更大的结构设计灵活性和更平稳的流动,从而降低了压降。为了在AMRR系统中应用这种回热器,通过数值模拟研究了各种回热器的基本特性,考虑了传热系数、压降和导热系数。AMRR仿真结果表明,在保持冷却性能的前提下,标准回热器的压降降低了45%。此外,两种改进的回热器在冷却性能下降很小的情况下,成功地进一步降低了压降。研究表明,该回热器可以作为一种潜在的回热器来提高AMRR系统的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信