Quantitative determination of the leaching range of in-situ leaching mining area by stagnation point

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Chong Zhang , Yongmei Li , Yuqing Niu , Kaixuan Tan , Tingting Xie , Yixuan Yao , Chunguang Li , Zhenzhong Liu
{"title":"Quantitative determination of the leaching range of in-situ leaching mining area by stagnation point","authors":"Chong Zhang ,&nbsp;Yongmei Li ,&nbsp;Yuqing Niu ,&nbsp;Kaixuan Tan ,&nbsp;Tingting Xie ,&nbsp;Yixuan Yao ,&nbsp;Chunguang Li ,&nbsp;Zhenzhong Liu","doi":"10.1016/j.net.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>The leaching range is critical to the leaching efficiency, production cost and environmental effect of in-situ leaching of uranium. In this study, the groundwater dynamics of the well-site was simulated to determine the leaching range in condition of different process parameters (such as drilling space and the pumping-injection ratio), in addition, the control factors and evolution rules of the leaching boundary were explored. The results show that there is an obvious water level trough, i.e., the “stagnation point”, outside the injection hole of the well-site of in-situ leaching. The hydraulic gradient of the stagnation point is zero, which indicates that the leaching solution can migrate the farthest to stagnation point outside the well. Therefore, the connection line of all the stagnation points quantitatively determines the outer boundary of the leaching range from the perspective of hydrodynamics. Reducing the spacing of borehole can increase the drawdown of groundwater, and slightly increase the distance between the stagnation point and the edge injection well, i.e., the outer boundary of the leaching range. However, increasing the pumping-injection ratio would significantly reduce the outer boundary of the leaching range.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 2","pages":"Article 103204"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324004522","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The leaching range is critical to the leaching efficiency, production cost and environmental effect of in-situ leaching of uranium. In this study, the groundwater dynamics of the well-site was simulated to determine the leaching range in condition of different process parameters (such as drilling space and the pumping-injection ratio), in addition, the control factors and evolution rules of the leaching boundary were explored. The results show that there is an obvious water level trough, i.e., the “stagnation point”, outside the injection hole of the well-site of in-situ leaching. The hydraulic gradient of the stagnation point is zero, which indicates that the leaching solution can migrate the farthest to stagnation point outside the well. Therefore, the connection line of all the stagnation points quantitatively determines the outer boundary of the leaching range from the perspective of hydrodynamics. Reducing the spacing of borehole can increase the drawdown of groundwater, and slightly increase the distance between the stagnation point and the edge injection well, i.e., the outer boundary of the leaching range. However, increasing the pumping-injection ratio would significantly reduce the outer boundary of the leaching range.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信