Modifying commercial water-based acrylic paint with Rice husk-derived silica aerogel fillers for building thermal insulation

IF 6.5 2区 材料科学 Q1 CHEMISTRY, APPLIED
Zulhelmi Alif Abdul Halim, Norhayati Ahmad, Muhamad Azizi Mat Yajid
{"title":"Modifying commercial water-based acrylic paint with Rice husk-derived silica aerogel fillers for building thermal insulation","authors":"Zulhelmi Alif Abdul Halim,&nbsp;Norhayati Ahmad,&nbsp;Muhamad Azizi Mat Yajid","doi":"10.1016/j.porgcoat.2025.109114","DOIUrl":null,"url":null,"abstract":"<div><div>For building retrofitting and energy conservation, thermal insulation coatings provide a significant advantage over mineral wool due to their ease of spray application on complex 3D shapes. This study investigates the use of rice husk derived silica aerogel (SA) as a low-cost thermal insulation additive in commercial water-based acrylic paint. The highly porous SA with nanostructured closed pores significantly reduces thermal conductivity by effectively inhibiting heat transfer through the paint coating. The supercritically-dried SA was methyl-silanized to achieve a balance of hydrophobicity and maintain a high silanol density, enabling its compatibility within the water-based emulsion. The SA particles were directly added at 20, 40, and 60 vol% into the emulsion, followed by spray coating onto a bulk substrate resulted in a 1.3 ± 0.2 mm dry film thickness. The relationship between SA volume fraction on the paint properties was investigated through a comprehensive evaluation of aesthetic, mechanical, and thermal characteristics. The introduction of SA did not substantially alter the original paint color, although it increased surface roughness due to SA aggregation. These surface aggregates effectively impede heat transfer and contribute to the formation of a thermally insulating char layer during combustion. Concurrently, the combination of preserved SA porosity and surface hydrophobicity endowed the modified paint with low thermal conductivity (0.11–0.07 W/mK), high cohesive strength (1.3–2.7 MPa), and a high-water contact angle (θ° = 110°).</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"201 ","pages":"Article 109114"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944025000633","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For building retrofitting and energy conservation, thermal insulation coatings provide a significant advantage over mineral wool due to their ease of spray application on complex 3D shapes. This study investigates the use of rice husk derived silica aerogel (SA) as a low-cost thermal insulation additive in commercial water-based acrylic paint. The highly porous SA with nanostructured closed pores significantly reduces thermal conductivity by effectively inhibiting heat transfer through the paint coating. The supercritically-dried SA was methyl-silanized to achieve a balance of hydrophobicity and maintain a high silanol density, enabling its compatibility within the water-based emulsion. The SA particles were directly added at 20, 40, and 60 vol% into the emulsion, followed by spray coating onto a bulk substrate resulted in a 1.3 ± 0.2 mm dry film thickness. The relationship between SA volume fraction on the paint properties was investigated through a comprehensive evaluation of aesthetic, mechanical, and thermal characteristics. The introduction of SA did not substantially alter the original paint color, although it increased surface roughness due to SA aggregation. These surface aggregates effectively impede heat transfer and contribute to the formation of a thermally insulating char layer during combustion. Concurrently, the combination of preserved SA porosity and surface hydrophobicity endowed the modified paint with low thermal conductivity (0.11–0.07 W/mK), high cohesive strength (1.3–2.7 MPa), and a high-water contact angle (θ° = 110°).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Organic Coatings
Progress in Organic Coatings 工程技术-材料科学:膜
CiteScore
11.40
自引率
15.20%
发文量
577
审稿时长
48 days
期刊介绍: The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as: • Chemical, physical and technological properties of organic coatings and related materials • Problems and methods of preparation, manufacture and application of these materials • Performance, testing and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信