{"title":"Determining the Betti numbers of R/(xpe,ype,zpe) for most even degree hypersurfaces in odd characteristic","authors":"Heath Camphire","doi":"10.1016/j.jpaa.2024.107858","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be a field of odd characteristic <em>p</em>. Fix an even number <span><math><mi>d</mi><mo><</mo><mi>p</mi><mo>+</mo><mn>1</mn></math></span> and a power <span><math><mi>q</mi><mo>≥</mo><mi>d</mi><mo>+</mo><mn>3</mn></math></span> of <em>p</em>. For most choices of degree <em>d</em> standard graded hypersurfaces <span><math><mi>R</mi><mo>=</mo><mi>k</mi><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>]</mo><mo>/</mo><mo>(</mo><mi>f</mi><mo>)</mo></math></span> with homogeneous maximal ideal <span><math><mi>m</mi></math></span>, we can determine the graded Betti numbers of <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><mi>q</mi><mo>]</mo></mrow></msup></math></span>. In fact, given two fixed powers <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mi>d</mi><mo>+</mo><mn>3</mn></math></span>, for most choices of <em>R</em> the graded Betti numbers in high homological degree of <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></mrow></msup></math></span> and <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow></msup></math></span> are the same up to a constant shift. This paper shows this fact by combining our results with the work of Miller, Rahmati, and R.G. on link-<em>q</em>-compressed polynomials in <span><span>[13]</span></span>. We show that link-<em>q</em>-compressed polynomials are indeed fairly common in many polynomial rings.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107858"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492400255X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let k be a field of odd characteristic p. Fix an even number and a power of p. For most choices of degree d standard graded hypersurfaces with homogeneous maximal ideal , we can determine the graded Betti numbers of . In fact, given two fixed powers , for most choices of R the graded Betti numbers in high homological degree of and are the same up to a constant shift. This paper shows this fact by combining our results with the work of Miller, Rahmati, and R.G. on link-q-compressed polynomials in [13]. We show that link-q-compressed polynomials are indeed fairly common in many polynomial rings.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.