A comparative evaluation of green surfactant-assisted calcium phosphate (CaP) coatings developed through electrodeposition and biomimetic routes

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Pakanati Siva Prasad , Prasanna Kumar Byram , Hushnaara Hadem , Chinmay Hazra , Ramkrishna Sen , Siddhartha Das , Karabi Das
{"title":"A comparative evaluation of green surfactant-assisted calcium phosphate (CaP) coatings developed through electrodeposition and biomimetic routes","authors":"Pakanati Siva Prasad ,&nbsp;Prasanna Kumar Byram ,&nbsp;Hushnaara Hadem ,&nbsp;Chinmay Hazra ,&nbsp;Ramkrishna Sen ,&nbsp;Siddhartha Das ,&nbsp;Karabi Das","doi":"10.1016/j.colsurfa.2024.135889","DOIUrl":null,"url":null,"abstract":"<div><div>This study compares the properties of green surfactant-assisted calcium phosphate (CaP) coatings developed on 316 L stainless steel (316 L SS) substrates using electrodeposition (ED) and biomimetic (BM) methods. The influence of biosurfactants (BS) on these coatings' properties, deposited through both processes, is also investigated. X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and Fourier-transform infrared spectroscopy (FTIR) confirm the presence of brushite and hydroxyapatite (HAp) in the ED coatings, while BM coatings show only HAp without BS and both brushite and HAp phases with BS. The SEM analysis reveals distinct morphologies, with BS-assisted coatings showing more organized structures. The presence of BS results in more uniform coatings in both ED and BM methods. Atomic force microscopy (AFM) analysis indicates that BM coatings are smoother than ED coatings, and BS further reduces surface roughness. The comprehensive evaluations through nanoindentation, scratch testing, and corrosion studies reveal that BS-assisted ED coatings exhibit superior hardness (H), elastic modulus (E), adhesion strength, and corrosion resistance. Cytocompatibility studies using the MTT assay demonstrate that all coatings support cell attachment and proliferation without cytotoxic effects, with BM coatings showing slightly better cell viability. This study highlights the potential of green surfactant-assisted CaP coatings developed using ED and BM methods, for improving the biocompatibility and other biological properties of 316 L SS implants.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"707 ","pages":"Article 135889"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724027535","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares the properties of green surfactant-assisted calcium phosphate (CaP) coatings developed on 316 L stainless steel (316 L SS) substrates using electrodeposition (ED) and biomimetic (BM) methods. The influence of biosurfactants (BS) on these coatings' properties, deposited through both processes, is also investigated. X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and Fourier-transform infrared spectroscopy (FTIR) confirm the presence of brushite and hydroxyapatite (HAp) in the ED coatings, while BM coatings show only HAp without BS and both brushite and HAp phases with BS. The SEM analysis reveals distinct morphologies, with BS-assisted coatings showing more organized structures. The presence of BS results in more uniform coatings in both ED and BM methods. Atomic force microscopy (AFM) analysis indicates that BM coatings are smoother than ED coatings, and BS further reduces surface roughness. The comprehensive evaluations through nanoindentation, scratch testing, and corrosion studies reveal that BS-assisted ED coatings exhibit superior hardness (H), elastic modulus (E), adhesion strength, and corrosion resistance. Cytocompatibility studies using the MTT assay demonstrate that all coatings support cell attachment and proliferation without cytotoxic effects, with BM coatings showing slightly better cell viability. This study highlights the potential of green surfactant-assisted CaP coatings developed using ED and BM methods, for improving the biocompatibility and other biological properties of 316 L SS implants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信