L. Sunil Chandran , Uttam K. Gupta , Dinabandhu Pradhan
{"title":"List recoloring of planar graphs","authors":"L. Sunil Chandran , Uttam K. Gupta , Dinabandhu Pradhan","doi":"10.1016/j.dam.2024.11.031","DOIUrl":null,"url":null,"abstract":"<div><div>A list assignment <span><math><mi>L</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is a function that assigns to every vertex <span><math><mi>v</mi></math></span> of <span><math><mi>G</mi></math></span> a set <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> of colors. A proper coloring <span><math><mi>α</mi></math></span> of <span><math><mi>G</mi></math></span> is called an <span><math><mi>L</mi></math></span>-coloring of <span><math><mi>G</mi></math></span> if <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. For a list assignment <span><math><mi>L</mi></math></span> of <span><math><mi>G</mi></math></span>, the <span><math><mi>L</mi></math></span>-recoloring graph <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is a graph whose vertices correspond to the <span><math><mi>L</mi></math></span>-colorings of <span><math><mi>G</mi></math></span> and two vertices of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> are adjacent if their corresponding <span><math><mi>L</mi></math></span>-colorings differ at exactly one vertex of <span><math><mi>G</mi></math></span>. A <span><math><mi>d</mi></math></span>-face (resp. <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-face) in a plane graph is a face of length (resp. at most) <span><math><mi>d</mi></math></span>. Dvořák and Feghali conjectured for a planar graph <span><math><mi>G</mi></math></span> and a list assignment <span><math><mi>L</mi></math></span> of <span><math><mi>G</mi></math></span>: (i) If <span><math><mrow><mrow><mo>|</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>10</mn></mrow></math></span> for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, then the diameter of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span>. (ii) If <span><math><mi>G</mi></math></span> is triangle-free and <span><math><mrow><mrow><mo>|</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>7</mn></mrow></math></span> for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, then the diameter of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span>. In a recent paper, Cranston (2022) has proved (ii). In this paper, we prove the following results.</div><div><ul><li><span>•</span><span><div>Let <span><math><mi>G</mi></math></span> be a plane graph without adjacent 3-faces and <span><math><mi>L</mi></math></span> be a list assignment of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>9</mn></mrow></math></span> for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, then the diameter of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> is at most <span><math><mrow><mn>13</mn><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>.</div></span></li><li><span>•</span><span><div>Let <span><math><mi>G</mi></math></span> be a plane graph in which 3-faces are not adjacent to <span><math><msup><mrow><mn>5</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>-faces and <span><math><mi>L</mi></math></span> be a list assignment of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>7</mn></mrow></math></span> for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, then the diameter of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> is at most <span><math><mrow><mn>242</mn><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>. This result confirms (ii) on a superclass of the class of triangle-free planar graphs.</div></span></li></ul></div><div>As an additional result, we show that if the independence number of a <span><math><mi>k</mi></math></span>-colorable graph <span><math><mi>G</mi></math></span> is at most <span><math><mrow><mi>p</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mi>L</mi></math></span> is a list assignment of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>ℓ</mi><mo>}</mo></mrow></mrow></math></span> for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>ℓ</mi><mo>≥</mo><mrow><mo>⌊</mo><mrow><mfrac><mrow><mi>p</mi><mi>⋅</mi><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then the diameter of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></mrow></mrow></math></span> is at most <span><math><mrow><mn>4</mn><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>. We further show that if <span><math><mrow><mi>ℓ</mi><mo><</mo><mrow><mo>⌊</mo><mrow><mfrac><mrow><mi>p</mi><mi>⋅</mi><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></mrow></mrow></math></span> can be a disconnected graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 71-87"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24005006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A list assignment of a graph is a function that assigns to every vertex of a set of colors. A proper coloring of is called an -coloring of if for every . For a list assignment of , the -recoloring graph of is a graph whose vertices correspond to the -colorings of and two vertices of are adjacent if their corresponding -colorings differ at exactly one vertex of . A -face (resp. -face) in a plane graph is a face of length (resp. at most) . Dvořák and Feghali conjectured for a planar graph and a list assignment of : (i) If for every , then the diameter of is . (ii) If is triangle-free and for every , then the diameter of is . In a recent paper, Cranston (2022) has proved (ii). In this paper, we prove the following results.
•
Let be a plane graph without adjacent 3-faces and be a list assignment of such that for every , then the diameter of is at most .
•
Let be a plane graph in which 3-faces are not adjacent to -faces and be a list assignment of such that for every , then the diameter of is at most . This result confirms (ii) on a superclass of the class of triangle-free planar graphs.
As an additional result, we show that if the independence number of a -colorable graph is at most and is a list assignment of such that for every , where , then the diameter of is at most . We further show that if , then can be a disconnected graph.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.