Discrete isoperimetric method for bandwidth, pathwidth and treewidth of hypercubes

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Lan Lin , Yixun Lin
{"title":"Discrete isoperimetric method for bandwidth, pathwidth and treewidth of hypercubes","authors":"Lan Lin ,&nbsp;Yixun Lin","doi":"10.1016/j.dam.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the clique number of graph <span><math><mi>G</mi></math></span>. The treewidth <span><math><mrow><mo>tw</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the minimum of <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> taken over all chordal supergraph <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span>. The pathwidth <span><math><mrow><mo>pw</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and the bandwidth <span><math><mrow><mo>bw</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can be defined in a similar way when the chordal graph <span><math><mi>H</mi></math></span> is replaced by an interval graph or a proper interval graph respectively. It follows that <span><math><mrow><mo>tw</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>pw</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>bw</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. A <span><math><mi>d</mi></math></span>-dimensional hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> is the graph with vertex set of all <span><math><mi>d</mi></math></span>-tuples <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span> with <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> where two vertices are adjacent if they differ in exactly one coordinate. In order to determine the bandwidth <span><math><mrow><mtext>bw</mtext><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> of hypercubes, Harper (1966) proposed a powerful discrete isoperimetric method. Later, it was shown that <span><math><mrow><mo>pw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>bw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, but <span><math><mrow><mo>tw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is unknown so far. In this paper, we review the discrete isoperimetric method for <span><math><mrow><mo>bw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mo>pw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><mo>tw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. In particular, we show that <span><math><mrow><mo>tw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>bw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> (it is trivial that <span><math><mrow><mo>tw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>bw</mo><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>d</mi><mo>≤</mo><mn>2</mn></mrow></math></span>).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 201-214"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24005195","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let ω(G) denote the clique number of graph G. The treewidth tw(G) of G is the minimum of ω(H)1 taken over all chordal supergraph H of G. The pathwidth pw(G) and the bandwidth bw(G) can be defined in a similar way when the chordal graph H is replaced by an interval graph or a proper interval graph respectively. It follows that tw(G)pw(G)bw(G). A d-dimensional hypercube Qd is the graph with vertex set of all d-tuples α1α2αd with αi{0,1} where two vertices are adjacent if they differ in exactly one coordinate. In order to determine the bandwidth bw(Qd) of hypercubes, Harper (1966) proposed a powerful discrete isoperimetric method. Later, it was shown that pw(Qd)=bw(Qd), but tw(Qd) is unknown so far. In this paper, we review the discrete isoperimetric method for bw(Qd), pw(Qd), and tw(Qd). In particular, we show that tw(Qd)=bw(Qd)1 for d3 (it is trivial that tw(Qd)=bw(Qd) for d2).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信