Monochromatic graph decompositions inspired by anti-Ramsey colorings

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yair Caro , Zsolt Tuza
{"title":"Monochromatic graph decompositions inspired by anti-Ramsey colorings","authors":"Yair Caro ,&nbsp;Zsolt Tuza","doi":"10.1016/j.dam.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>We consider coloring problems inspired by the theory of anti-Ramsey /rainbow colorings that we generalize to a far extent.</div><div>Let <span><math><mi>F</mi></math></span> be a hereditary family of graphs; i.e., if <span><math><mrow><mi>H</mi><mo>∈</mo><mi>F</mi></mrow></math></span> and <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊂</mo><mi>H</mi></mrow></math></span> then also <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊂</mo><mi>F</mi></mrow></math></span>. For a graph <span><math><mi>G</mi></math></span> and any integer <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span>, let <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> denote the smallest number <span><math><mi>k</mi></math></span> of colors such that any edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with at least <span><math><mi>k</mi></math></span> colors forces a copy of <span><math><mi>G</mi></math></span> in which each color class induces a member of <span><math><mi>F</mi></math></span>.</div><div>The case <span><math><mrow><mi>F</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> is the notorious anti-Ramsey rainbow coloring problem introduced by Erdős, Simonovits and Sós in 1973.</div><div>Using the <span><math><mi>F</mi></math></span>-deck of <span><math><mi>G</mi></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>H</mi><mo>:</mo><mi>H</mi><mo>=</mo><mi>G</mi><mo>−</mo><mi>D</mi><mo>,</mo><mspace></mspace><mi>D</mi><mo>∈</mo><mi>F</mi><mo>}</mo></mrow></mrow></math></span>, we define <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>χ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>:</mo><mi>H</mi><mo>∈</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>.</div><div>The main theorem we prove is: Suppose <span><math><mi>F</mi></math></span> is a hereditary family of graphs, and let <span><math><mi>G</mi></math></span> be a graph not a member of <span><math><mi>F</mi></math></span>. (1) If <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span>, then <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></math></span>. (2) Otherwise <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div><div>Among the families covered by this theorem are: matchings, acyclic graphs, planar and outerplanar graphs, <span><math><mi>d</mi></math></span>-degenerate graphs, graphs with chromatic number at most <span><math><mi>k</mi></math></span>, graphs with bounded maximum degree, and many more.</div><div>We supply many concrete examples to demonstrate the wide range of applications of the main theorem; the next result is a representative of these examples.</div><div>For <span><math><mrow><mi>p</mi><mo>≥</mo><mn>5</mn></mrow></math></span> and <span><math><mrow><mi>F</mi><mo>=</mo><mrow><mo>{</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><mi>t</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, we have <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mi>p</mi><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></math></span>; this is the smallest number of colors such that any edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with this many colors contains a properly colored copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. In other words, a certain number of colors forces nearly twice as large properly edge-colored complete subgraphs as rainbow ones.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 190-200"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24005274","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider coloring problems inspired by the theory of anti-Ramsey /rainbow colorings that we generalize to a far extent.
Let F be a hereditary family of graphs; i.e., if HF and HH then also HF. For a graph G and any integer n|G|, let f(n,G|F) denote the smallest number k of colors such that any edge coloring of Kn with at least k colors forces a copy of G in which each color class induces a member of F.
The case F={K2} is the notorious anti-Ramsey rainbow coloring problem introduced by Erdős, Simonovits and Sós in 1973.
Using the F-deck of G, D(G|F)={H:H=GD,DF}, we define χF(G)=min{χ(H):HD(G|F)}.
The main theorem we prove is: Suppose F is a hereditary family of graphs, and let G be a graph not a member of F. (1) If χF(G)3, then f(n,G|F)=(1+o(1))ex(n,KχF(G)). (2) Otherwise f(n,G|F)=o(n2).
Among the families covered by this theorem are: matchings, acyclic graphs, planar and outerplanar graphs, d-degenerate graphs, graphs with chromatic number at most k, graphs with bounded maximum degree, and many more.
We supply many concrete examples to demonstrate the wide range of applications of the main theorem; the next result is a representative of these examples.
For p5 and F={tK2:t1}, we have f(n,Kp|F)=(1+o(1))ex(n,Kp/2); this is the smallest number of colors such that any edge coloring of Kn with this many colors contains a properly colored copy of Kp. In other words, a certain number of colors forces nearly twice as large properly edge-colored complete subgraphs as rainbow ones.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信