{"title":"Monochromatic graph decompositions inspired by anti-Ramsey colorings","authors":"Yair Caro , Zsolt Tuza","doi":"10.1016/j.dam.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>We consider coloring problems inspired by the theory of anti-Ramsey /rainbow colorings that we generalize to a far extent.</div><div>Let <span><math><mi>F</mi></math></span> be a hereditary family of graphs; i.e., if <span><math><mrow><mi>H</mi><mo>∈</mo><mi>F</mi></mrow></math></span> and <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊂</mo><mi>H</mi></mrow></math></span> then also <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊂</mo><mi>F</mi></mrow></math></span>. For a graph <span><math><mi>G</mi></math></span> and any integer <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>|</mo><mi>G</mi><mo>|</mo></mrow></mrow></math></span>, let <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> denote the smallest number <span><math><mi>k</mi></math></span> of colors such that any edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with at least <span><math><mi>k</mi></math></span> colors forces a copy of <span><math><mi>G</mi></math></span> in which each color class induces a member of <span><math><mi>F</mi></math></span>.</div><div>The case <span><math><mrow><mi>F</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> is the notorious anti-Ramsey rainbow coloring problem introduced by Erdős, Simonovits and Sós in 1973.</div><div>Using the <span><math><mi>F</mi></math></span>-deck of <span><math><mi>G</mi></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>H</mi><mo>:</mo><mi>H</mi><mo>=</mo><mi>G</mi><mo>−</mo><mi>D</mi><mo>,</mo><mspace></mspace><mi>D</mi><mo>∈</mo><mi>F</mi><mo>}</mo></mrow></mrow></math></span>, we define <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>χ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>:</mo><mi>H</mi><mo>∈</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>.</div><div>The main theorem we prove is: Suppose <span><math><mi>F</mi></math></span> is a hereditary family of graphs, and let <span><math><mi>G</mi></math></span> be a graph not a member of <span><math><mi>F</mi></math></span>. (1) If <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span>, then <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></math></span>. (2) Otherwise <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div><div>Among the families covered by this theorem are: matchings, acyclic graphs, planar and outerplanar graphs, <span><math><mi>d</mi></math></span>-degenerate graphs, graphs with chromatic number at most <span><math><mi>k</mi></math></span>, graphs with bounded maximum degree, and many more.</div><div>We supply many concrete examples to demonstrate the wide range of applications of the main theorem; the next result is a representative of these examples.</div><div>For <span><math><mrow><mi>p</mi><mo>≥</mo><mn>5</mn></mrow></math></span> and <span><math><mrow><mi>F</mi><mo>=</mo><mrow><mo>{</mo><mi>t</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><mi>t</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, we have <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>|</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mi>p</mi><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></math></span>; this is the smallest number of colors such that any edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with this many colors contains a properly colored copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. In other words, a certain number of colors forces nearly twice as large properly edge-colored complete subgraphs as rainbow ones.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"363 ","pages":"Pages 190-200"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24005274","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider coloring problems inspired by the theory of anti-Ramsey /rainbow colorings that we generalize to a far extent.
Let be a hereditary family of graphs; i.e., if and then also . For a graph and any integer , let denote the smallest number of colors such that any edge coloring of with at least colors forces a copy of in which each color class induces a member of .
The case is the notorious anti-Ramsey rainbow coloring problem introduced by Erdős, Simonovits and Sós in 1973.
Using the -deck of , , we define .
The main theorem we prove is: Suppose is a hereditary family of graphs, and let be a graph not a member of . (1) If , then . (2) Otherwise .
Among the families covered by this theorem are: matchings, acyclic graphs, planar and outerplanar graphs, -degenerate graphs, graphs with chromatic number at most , graphs with bounded maximum degree, and many more.
We supply many concrete examples to demonstrate the wide range of applications of the main theorem; the next result is a representative of these examples.
For and , we have ; this is the smallest number of colors such that any edge coloring of with this many colors contains a properly colored copy of . In other words, a certain number of colors forces nearly twice as large properly edge-colored complete subgraphs as rainbow ones.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.