{"title":"Immune cell and engineering for the therapeutics","authors":"Jin Hyuck Jeong , Miseol Kim , Hui-Shan Li","doi":"10.1016/j.cobme.2024.100569","DOIUrl":null,"url":null,"abstract":"<div><div>Reprogrammed immune cell therapies show great promise as “living drugs”, a concept successfully demonstrated in clinical settings with engineered chimeric antigen receptor (CAR) T cells. Beyond CAR-T therapies, immune cells possess unique characteristics that can be leveraged to enhance the body's immune response against specific diseases. This review first highlights recent clinical advancements in immune cell therapies, focusing on the use of different immune cell types across various disease settings. It then explores current engineering approaches aimed at addressing the specific challenges in cancer treatment. Additionally, the review examines the role of emerging technologies such as synthetic circuits, CRISPR, and induced pluripotent stem cells (iPSCs) in expanding the potential of immune cell therapies to treat a broad range of conditions.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"33 ","pages":"Article 100569"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451124000497","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reprogrammed immune cell therapies show great promise as “living drugs”, a concept successfully demonstrated in clinical settings with engineered chimeric antigen receptor (CAR) T cells. Beyond CAR-T therapies, immune cells possess unique characteristics that can be leveraged to enhance the body's immune response against specific diseases. This review first highlights recent clinical advancements in immune cell therapies, focusing on the use of different immune cell types across various disease settings. It then explores current engineering approaches aimed at addressing the specific challenges in cancer treatment. Additionally, the review examines the role of emerging technologies such as synthetic circuits, CRISPR, and induced pluripotent stem cells (iPSCs) in expanding the potential of immune cell therapies to treat a broad range of conditions.