Beyond static models: Mechanically dynamic matrices reveal new insights into cancer and fibrosis progression

IF 4.7 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL
M. Walker , D. Gourdon , M. Cantini
{"title":"Beyond static models: Mechanically dynamic matrices reveal new insights into cancer and fibrosis progression","authors":"M. Walker ,&nbsp;D. Gourdon ,&nbsp;M. Cantini","doi":"10.1016/j.cobme.2024.100570","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamic mechanical nature of extracellular matrices (ECMs) is crucial for the mechanosensitive regulation of cell fate. This is evident in pathological conditions such as cancer and fibrosis, which are characterised by highly fibrotic tissue developing over time. This fibrotic progression not only alters tissue mechanics, but also coincides with the reprogramming of resident cells, promoting their differentiation into aberrant phenotypes and increasing drug resistance. Hydrogels, with their tuneable mechanical and biochemical properties, emerge as powerful ECM mimetics to model and study these abnormal, mechanically-driven cell differentiation phenomena. In this review, after establishing how conventional, mechanically static hydrogels contribute to our understanding of the role of altered mechanosensing in cell differentiation during cancer and fibrosis, we explore the research opportunities given by advanced dynamic matrices. Models employing hydrogels that are fast relaxing, plastic or even with temporally switchable mechanics reveal the otherwise hidden role of time-dependent phenomena during disease development.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"33 ","pages":"Article 100570"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451124000503","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic mechanical nature of extracellular matrices (ECMs) is crucial for the mechanosensitive regulation of cell fate. This is evident in pathological conditions such as cancer and fibrosis, which are characterised by highly fibrotic tissue developing over time. This fibrotic progression not only alters tissue mechanics, but also coincides with the reprogramming of resident cells, promoting their differentiation into aberrant phenotypes and increasing drug resistance. Hydrogels, with their tuneable mechanical and biochemical properties, emerge as powerful ECM mimetics to model and study these abnormal, mechanically-driven cell differentiation phenomena. In this review, after establishing how conventional, mechanically static hydrogels contribute to our understanding of the role of altered mechanosensing in cell differentiation during cancer and fibrosis, we explore the research opportunities given by advanced dynamic matrices. Models employing hydrogels that are fast relaxing, plastic or even with temporally switchable mechanics reveal the otherwise hidden role of time-dependent phenomena during disease development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信