High-efficiency exudates drainage of anti-adhesion dressings for chronic wound

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bingyang Lu , Dehui Wang , Junchang Guo , Yang Shen , Qian Feng , Jinlong Yang , Xiao Han , Huali Yu , Luohuizi Li , Jiaxin Liu , Jing Luo , Huan Liu , Zhongwei Zhang , Xu Deng
{"title":"High-efficiency exudates drainage of anti-adhesion dressings for chronic wound","authors":"Bingyang Lu ,&nbsp;Dehui Wang ,&nbsp;Junchang Guo ,&nbsp;Yang Shen ,&nbsp;Qian Feng ,&nbsp;Jinlong Yang ,&nbsp;Xiao Han ,&nbsp;Huali Yu ,&nbsp;Luohuizi Li ,&nbsp;Jiaxin Liu ,&nbsp;Jing Luo ,&nbsp;Huan Liu ,&nbsp;Zhongwei Zhang ,&nbsp;Xu Deng","doi":"10.1016/j.cclet.2024.110601","DOIUrl":null,"url":null,"abstract":"<div><div>Secondary trauma, resulting in undesirable injury and bleeding during wound dressing treatment, which will cause the treatment of chronic wounds ineffective. The medical cotton gauzes often bring strong adhesion due to the exudates absorbed and clots formed. Conversely, the easily detachable wound dressings neglect the wound seepage management, rendering them ineffective in facing the complexities of chronic wounds. To address this challenge, we propose a novel draining anti-adhesion dressings (DAD) by constructing the hydrophilic microchannels array on the superhydrophobic dressing. The superhydrophobic areas facilitate stable wound fluid repellence leading to achieve the anti-adhesion (18.7 % detachment energy of cotton) and the microchannel array ensures the transportation of excess exudates (&gt;92 %) by the capillary force. Notably, our dressing demonstrates a significant healing-promoting in a chronic wound model in rats. The development of such dressings holds promise for advancing wound care practices and addressing the unique challenges posed by chronic wounds, offering a valuable solution for improved clinical outcomes.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 4","pages":"Article 110601"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724011197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Secondary trauma, resulting in undesirable injury and bleeding during wound dressing treatment, which will cause the treatment of chronic wounds ineffective. The medical cotton gauzes often bring strong adhesion due to the exudates absorbed and clots formed. Conversely, the easily detachable wound dressings neglect the wound seepage management, rendering them ineffective in facing the complexities of chronic wounds. To address this challenge, we propose a novel draining anti-adhesion dressings (DAD) by constructing the hydrophilic microchannels array on the superhydrophobic dressing. The superhydrophobic areas facilitate stable wound fluid repellence leading to achieve the anti-adhesion (18.7 % detachment energy of cotton) and the microchannel array ensures the transportation of excess exudates (>92 %) by the capillary force. Notably, our dressing demonstrates a significant healing-promoting in a chronic wound model in rats. The development of such dressings holds promise for advancing wound care practices and addressing the unique challenges posed by chronic wounds, offering a valuable solution for improved clinical outcomes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信