Microstructure-sensitive mechanical behavior of an additively manufactured psuedoelastic shape memory alloy

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Patxi Fernandez-Zelaia , Chris Ledford , Chris M. Fancher , Sarah Graham , Taresh Guleria , Brad Sampson , Fred List III , Jason Mayeur , Chins Chinnasamy , Mohammad Elahinia , Michael M. Kirka
{"title":"Microstructure-sensitive mechanical behavior of an additively manufactured psuedoelastic shape memory alloy","authors":"Patxi Fernandez-Zelaia ,&nbsp;Chris Ledford ,&nbsp;Chris M. Fancher ,&nbsp;Sarah Graham ,&nbsp;Taresh Guleria ,&nbsp;Brad Sampson ,&nbsp;Fred List III ,&nbsp;Jason Mayeur ,&nbsp;Chins Chinnasamy ,&nbsp;Mohammad Elahinia ,&nbsp;Michael M. Kirka","doi":"10.1016/j.addlet.2025.100270","DOIUrl":null,"url":null,"abstract":"<div><div>The additive manufacturing of shape memory alloys into complex geometries enables fabrication of advanced functional systems across a variety of fields and domains. This work presents results focused on the mechanical behavior of additively manufactured shape memory pseudoelastic NiTi. The deformation induced solid state phase transformation from austenite to martensite allows this system to accommodate large recoverable strains. This deformation behavior is fundamentally driven by crystal-scale transformation physics. Laser powder bed fusion processing reveals that the resulting microstructure, both grain morphology and crystallographic texture, is strongly dependent on the manufacturing processing history. Exhaustive mechanical testing demonstrates that these microstructural factors strongly impact both tensile and cyclic stress–strain behavior. Cyclic dissipative behavior, however, is similar across all tested microstructures following an initial transient period. Remarkably, analysis of spatial strain fields during tensile loading reveals two distinctly different localization “modes”. The first is initiation of localized deformation bands which continuously propagate through the tensile bar during loading. In the second mode localization is observed but lacks propagation; instead additional localization cites nucleate during subsequent loading. The latter phenomena is suspected to be driven by grain-scale deformation physics as the localized band morphologies coincide with grain morphologies. These phenomena strongly impact the resulting aggregate stress–strain behavior. Hence, manufacturers and designers of psuedoelastic functional components must at the very least consider the potential variability in properties when considering additive manufacturing processing. More ideally the process–structure–property relations can be used to further tailor and optimize final functional performance.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100270"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The additive manufacturing of shape memory alloys into complex geometries enables fabrication of advanced functional systems across a variety of fields and domains. This work presents results focused on the mechanical behavior of additively manufactured shape memory pseudoelastic NiTi. The deformation induced solid state phase transformation from austenite to martensite allows this system to accommodate large recoverable strains. This deformation behavior is fundamentally driven by crystal-scale transformation physics. Laser powder bed fusion processing reveals that the resulting microstructure, both grain morphology and crystallographic texture, is strongly dependent on the manufacturing processing history. Exhaustive mechanical testing demonstrates that these microstructural factors strongly impact both tensile and cyclic stress–strain behavior. Cyclic dissipative behavior, however, is similar across all tested microstructures following an initial transient period. Remarkably, analysis of spatial strain fields during tensile loading reveals two distinctly different localization “modes”. The first is initiation of localized deformation bands which continuously propagate through the tensile bar during loading. In the second mode localization is observed but lacks propagation; instead additional localization cites nucleate during subsequent loading. The latter phenomena is suspected to be driven by grain-scale deformation physics as the localized band morphologies coincide with grain morphologies. These phenomena strongly impact the resulting aggregate stress–strain behavior. Hence, manufacturers and designers of psuedoelastic functional components must at the very least consider the potential variability in properties when considering additive manufacturing processing. More ideally the process–structure–property relations can be used to further tailor and optimize final functional performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信