Development and characterisation of integrated wet-spun alginate-Moringa oleifera composite fibers for potential water purification

IF 6.2 Q1 CHEMISTRY, APPLIED
Abimbola Oluwatayo Orisawayi , Krzysztof K. Koziol , Sameer S. Rahatekar
{"title":"Development and characterisation of integrated wet-spun alginate-Moringa oleifera composite fibers for potential water purification","authors":"Abimbola Oluwatayo Orisawayi ,&nbsp;Krzysztof K. Koziol ,&nbsp;Sameer S. Rahatekar","doi":"10.1016/j.carpta.2024.100620","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring access to safe drinking water requires effective materials and technologies to treat contaminated water. In this study, we developed sodium alginate fibre (SAlgF) and their composite fibres functionalised with pulverised <em>Moringa oleifera</em> (MoP) at concentrations of 0.5 %, 1 %, 4 %, and 8 % using the wet-spinning technique. Both SAlgF and MoP are biodegradable, offering eco-friendly alternatives to synthetic polymers in line with green manufacturing. The results showed significant improvements in the mechanical properties, with the 1 % MoP composite fibre exhibiting 6 times the strength of pure SAlgF in terms of ultimate tensile strength (UTS) and Young's modulus (YM). X-ray Diffraction (XRD) analysis revealed enhanced fibres interactions, while Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) confirmed the successful incorporation of MoP into the alginate matrix and improved thermal stability. Furthermore, the result obtained from the Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX) indicated morphological changes and the uptake of heavy metal ions when immersed into solutions containing Cu²⁺, Ni²⁺, and Cd²⁺. These findings demonstrate the potential of MoP-modified composite fibres for sustainable and cost-effective water treatment applications, particularly in developing countries.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100620"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924002007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring access to safe drinking water requires effective materials and technologies to treat contaminated water. In this study, we developed sodium alginate fibre (SAlgF) and their composite fibres functionalised with pulverised Moringa oleifera (MoP) at concentrations of 0.5 %, 1 %, 4 %, and 8 % using the wet-spinning technique. Both SAlgF and MoP are biodegradable, offering eco-friendly alternatives to synthetic polymers in line with green manufacturing. The results showed significant improvements in the mechanical properties, with the 1 % MoP composite fibre exhibiting 6 times the strength of pure SAlgF in terms of ultimate tensile strength (UTS) and Young's modulus (YM). X-ray Diffraction (XRD) analysis revealed enhanced fibres interactions, while Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) confirmed the successful incorporation of MoP into the alginate matrix and improved thermal stability. Furthermore, the result obtained from the Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX) indicated morphological changes and the uptake of heavy metal ions when immersed into solutions containing Cu²⁺, Ni²⁺, and Cd²⁺. These findings demonstrate the potential of MoP-modified composite fibres for sustainable and cost-effective water treatment applications, particularly in developing countries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信