Tunable chemotherapy release using biocompatible fatty acid-modified ethyl cellulose nanofibers

IF 6.2 Q1 CHEMISTRY, APPLIED
Michael Wildy , Qiangjun Hao , Wanying Wei , Duc Huy Nguyen , Kai Xu , John Schossig , Xiao Hu , David Salas-de la Cruz , Dong Choon Hyun , Zhihong Wang , Ping Lu
{"title":"Tunable chemotherapy release using biocompatible fatty acid-modified ethyl cellulose nanofibers","authors":"Michael Wildy ,&nbsp;Qiangjun Hao ,&nbsp;Wanying Wei ,&nbsp;Duc Huy Nguyen ,&nbsp;Kai Xu ,&nbsp;John Schossig ,&nbsp;Xiao Hu ,&nbsp;David Salas-de la Cruz ,&nbsp;Dong Choon Hyun ,&nbsp;Zhihong Wang ,&nbsp;Ping Lu","doi":"10.1016/j.carpta.2025.100670","DOIUrl":null,"url":null,"abstract":"<div><div>Localized stimuli-responsive delivery systems for chemotherapy drugs have the potential to revolutionize therapeutic outcomes by offering greater selectivity, thereby reducing systemic side effects and bolstering patient benefits. In this work, ethyl cellulose (EC) nanofibers were prepared using electrospinning, encapsulating both doxorubicin HCl (DOX) and Rhodamine B (RhB) as representative hydrophilic chemotherapy and model drugs, respectively, and lauric acid (LA) as a biocompatible phase change material (PCM). <em>In vitro</em> release profiles demonstrated a distinct temperature-dependent release pattern: a noteworthy 27 % increase in release for DOX at pH 7.4 at 40 °C compared to 37 °C after 96 h Additionally, the release mechanism of DOX showcased pronounced pH sensitivity, evidenced by an increase of 41 % in release after 96 h at pH 4 when the temperature was increased from 37 °C to 40 °C, combined with a noticeable reduction of burst release. Furthermore, cytotoxicity assay indicated the prolonged efficacy of the DOX-embedded nanofibers, underscoring their therapeutic potential. Advanced analytical techniques, such as DSC, XRD, and FTIR, revealed an amorphous state of the drugs and a harmonious PCM integration. Our EC drug delivery system (DDS) demonstrated potential for targeted, stimuli-responsive DOX release, which could revolutionize its traditional administration, particularly in post-surgical scenarios to prevent tumor recurrence.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100670"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893925000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Localized stimuli-responsive delivery systems for chemotherapy drugs have the potential to revolutionize therapeutic outcomes by offering greater selectivity, thereby reducing systemic side effects and bolstering patient benefits. In this work, ethyl cellulose (EC) nanofibers were prepared using electrospinning, encapsulating both doxorubicin HCl (DOX) and Rhodamine B (RhB) as representative hydrophilic chemotherapy and model drugs, respectively, and lauric acid (LA) as a biocompatible phase change material (PCM). In vitro release profiles demonstrated a distinct temperature-dependent release pattern: a noteworthy 27 % increase in release for DOX at pH 7.4 at 40 °C compared to 37 °C after 96 h Additionally, the release mechanism of DOX showcased pronounced pH sensitivity, evidenced by an increase of 41 % in release after 96 h at pH 4 when the temperature was increased from 37 °C to 40 °C, combined with a noticeable reduction of burst release. Furthermore, cytotoxicity assay indicated the prolonged efficacy of the DOX-embedded nanofibers, underscoring their therapeutic potential. Advanced analytical techniques, such as DSC, XRD, and FTIR, revealed an amorphous state of the drugs and a harmonious PCM integration. Our EC drug delivery system (DDS) demonstrated potential for targeted, stimuli-responsive DOX release, which could revolutionize its traditional administration, particularly in post-surgical scenarios to prevent tumor recurrence.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信