Effects of ausforming on the microstructure and stability of blocky austenite in nanostructured bainite

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Po-Yen Tung , Shao-Pu Tsai , Yu-Ting Tsai , Jer-Ren Yang
{"title":"Effects of ausforming on the microstructure and stability of blocky austenite in nanostructured bainite","authors":"Po-Yen Tung ,&nbsp;Shao-Pu Tsai ,&nbsp;Yu-Ting Tsai ,&nbsp;Jer-Ren Yang","doi":"10.1016/j.matchar.2025.114792","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructured bainitic steels exhibit high strength and toughness. A potential approach to improving their toughness is enhancing the chemical or mechanical stability of blocky austenite while maintaining the volume fractions of austenite and bainitic ferrite. This study investigates the effects of ausforming at 250 °C with a 20 % strain on the microstructure and stability of blocky austenite and contrasts these effects with non-ausformed bainite. The stability of austenite is assessed by cryogenic treatments. Two types of bainitic ferrite are observed in ausformed bainite. The fine bainitic ferrite forms around austenite twins and has the Kurdjumov-Sachs (K-S) orientation relationship with austenite. In contrast, the coarse bainitic ferrite, which has the Nishiyama-Wassermann (N-W) orientation relationship, creates an interlocking microstructure where blocky austenite is refined and has a high dislocation density. The blocky austenite in the ausformed bainite remains untransformed after the cryogenic treatment, while some blocky austenite in non-ausformed bainite transforms into martensite. These results suggest that two types of bainitic ferrite may form via different mechanisms, and that the interlocking microstructure enhances mechanical stability of blocky austenite by dislocations and block size refinement.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"221 ","pages":"Article 114792"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325000816","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Nanostructured bainitic steels exhibit high strength and toughness. A potential approach to improving their toughness is enhancing the chemical or mechanical stability of blocky austenite while maintaining the volume fractions of austenite and bainitic ferrite. This study investigates the effects of ausforming at 250 °C with a 20 % strain on the microstructure and stability of blocky austenite and contrasts these effects with non-ausformed bainite. The stability of austenite is assessed by cryogenic treatments. Two types of bainitic ferrite are observed in ausformed bainite. The fine bainitic ferrite forms around austenite twins and has the Kurdjumov-Sachs (K-S) orientation relationship with austenite. In contrast, the coarse bainitic ferrite, which has the Nishiyama-Wassermann (N-W) orientation relationship, creates an interlocking microstructure where blocky austenite is refined and has a high dislocation density. The blocky austenite in the ausformed bainite remains untransformed after the cryogenic treatment, while some blocky austenite in non-ausformed bainite transforms into martensite. These results suggest that two types of bainitic ferrite may form via different mechanisms, and that the interlocking microstructure enhances mechanical stability of blocky austenite by dislocations and block size refinement.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信