Deciphering the role of metabolites and phytohormones in plant resilience to drought and herbivory

IF 6.8 Q1 PLANT SCIENCES
Monika Sahu , Ashok P. Giri
{"title":"Deciphering the role of metabolites and phytohormones in plant resilience to drought and herbivory","authors":"Monika Sahu ,&nbsp;Ashok P. Giri","doi":"10.1016/j.stress.2025.100737","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change is expected to result in increased variability in precipitation and more frequent outbreaks of insect pests. Thus, it is important to understand how plant-environment interactions are affected by both abiotic and biotic stresses. Water is essential for plant growth, development and interactions with other organisms, including insects. This review synthesizes current studies on the impact of drought and herbivore defense mechanisms and associated metabolic changes in plants. Severe drought can enhance plant tolerance to herbivores by promoting escape strategies whereas mild or intermittent drought may benefit insects by increasing nutrient availability. We discuss how plants adjust their metabolism to mitigate the effects of combined stresses. We further highlight the role of hormonal signaling pathways, such as abscisic acid, jasmonic acid, salicylic acid and ethylene in coordinating plant responses. Research on metabolic changes accompanying hormonal crosstalk involved in managing multiple stresses is still emerging. The available evidence suggests that the outcome of drought and herbivory varies depending on factors such as stress intensity, duration, plant-herbivore species, and insect-feeding guilds. We propose open questions and anticipate further advances in molecular understanding of plant resilience to combined stresses such as drought and herbivory in the near future.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100737"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X25000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is expected to result in increased variability in precipitation and more frequent outbreaks of insect pests. Thus, it is important to understand how plant-environment interactions are affected by both abiotic and biotic stresses. Water is essential for plant growth, development and interactions with other organisms, including insects. This review synthesizes current studies on the impact of drought and herbivore defense mechanisms and associated metabolic changes in plants. Severe drought can enhance plant tolerance to herbivores by promoting escape strategies whereas mild or intermittent drought may benefit insects by increasing nutrient availability. We discuss how plants adjust their metabolism to mitigate the effects of combined stresses. We further highlight the role of hormonal signaling pathways, such as abscisic acid, jasmonic acid, salicylic acid and ethylene in coordinating plant responses. Research on metabolic changes accompanying hormonal crosstalk involved in managing multiple stresses is still emerging. The available evidence suggests that the outcome of drought and herbivory varies depending on factors such as stress intensity, duration, plant-herbivore species, and insect-feeding guilds. We propose open questions and anticipate further advances in molecular understanding of plant resilience to combined stresses such as drought and herbivory in the near future.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信