Optimizing PID control for automatic voltage regulators using ADIWACO PSO

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Yaw Opoku Mensah Sekyere , Priscilla Oyeladun Ajiboye , Francis Boafo Effah , Bernard Tawiah Opoku
{"title":"Optimizing PID control for automatic voltage regulators using ADIWACO PSO","authors":"Yaw Opoku Mensah Sekyere ,&nbsp;Priscilla Oyeladun Ajiboye ,&nbsp;Francis Boafo Effah ,&nbsp;Bernard Tawiah Opoku","doi":"10.1016/j.sciaf.2025.e02562","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the application of an enhanced Particle Swarm Optimization (PSO) variant, known as ADIWACO, for tuning Proportional-Integral-Derivative (PID) controllers in Automatic Voltage Regulator (AVR) systems. The ADIWACO PSO incorporates adaptive hyperbolic tangent functions for inertia weight and acceleration coefficients, effectively balancing exploration and exploitation during the optimization process. Using the Integral Time Absolute Error (ITAE) as the objective function, the proposed method achieves superior controller performance compared to existing optimization techniques, including BAT, Improved KIA, ARO, and BBO. The ADIWACO-tuned PID controller significantly reduces overshoot and settling time while enhancing system stability. Additionally, integrating a derivative filter with an optimally tuned coefficient further improves the AVR system's dynamic response. Stability analysis in the frequency domain confirms the robustness of the proposed approach. To validate its practicality, the method was applied to the IEEE 39-bus test system as a case study, demonstrating its effectiveness in real-world scenarios. The results underscore the potential of ADIWACO PSO to enhance the dynamic response and stability of AVR systems, offering a reliable and robust solution for engineering applications. This research contributes to advancing control system optimization and highlights the broader applicability of ADIWACO to complex systems requiring high-performance control solutions.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"27 ","pages":"Article e02562"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246822762500033X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the application of an enhanced Particle Swarm Optimization (PSO) variant, known as ADIWACO, for tuning Proportional-Integral-Derivative (PID) controllers in Automatic Voltage Regulator (AVR) systems. The ADIWACO PSO incorporates adaptive hyperbolic tangent functions for inertia weight and acceleration coefficients, effectively balancing exploration and exploitation during the optimization process. Using the Integral Time Absolute Error (ITAE) as the objective function, the proposed method achieves superior controller performance compared to existing optimization techniques, including BAT, Improved KIA, ARO, and BBO. The ADIWACO-tuned PID controller significantly reduces overshoot and settling time while enhancing system stability. Additionally, integrating a derivative filter with an optimally tuned coefficient further improves the AVR system's dynamic response. Stability analysis in the frequency domain confirms the robustness of the proposed approach. To validate its practicality, the method was applied to the IEEE 39-bus test system as a case study, demonstrating its effectiveness in real-world scenarios. The results underscore the potential of ADIWACO PSO to enhance the dynamic response and stability of AVR systems, offering a reliable and robust solution for engineering applications. This research contributes to advancing control system optimization and highlights the broader applicability of ADIWACO to complex systems requiring high-performance control solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信