Oxidation-resistant and highly sensitive cellulose paper pressure sensor for wearable electronics

IF 6.2 Q1 CHEMISTRY, APPLIED
Deristisya Zahra , Mohammad Zarei , Jinwoo Hwang , Eunho Lee , Seung Goo Lee
{"title":"Oxidation-resistant and highly sensitive cellulose paper pressure sensor for wearable electronics","authors":"Deristisya Zahra ,&nbsp;Mohammad Zarei ,&nbsp;Jinwoo Hwang ,&nbsp;Eunho Lee ,&nbsp;Seung Goo Lee","doi":"10.1016/j.carpta.2025.100672","DOIUrl":null,"url":null,"abstract":"<div><div>Nonbiodegradable polymers widely used in wearable electronics and sensors contribute significantly to e-waste and environmental toxicity. While the integration of biodegradable biopolymers offers a promising solution, their application is hindered by challenges in achieving reliable conductivity, sensitivity, and stability. In this study, we develop a biodegradable cellulose paper pressure sensor coated with silver nanowires (AgNWs), Ti<sub>3</sub>C<sub>2</sub>Tx (MXene), and reduced graphene oxide (rGO). The AgNWs/MXene/rGO-coated cellulose paper capacitive pressure sensor demonstrates high sensitivity (1.031 kPa<sup>−1</sup>) over a wide pressure range (0–40 kPa), remarkable robustness (5000 cycles), and excellent sensing stability (&gt;44 days). Moreover, the incorporation of rGO nanosheets enhances the resistance and stability of the AgNWs/MXene-coated paper-based composite against oxidation. Furthermore, various sensory architectures, including origami butterfly and kirigami snowflake pressure sensors, have been demonstrated using AgNWs/MXene/rGO-coated cellulose paper for a wide range of physiological sensing applications. These diverse applications highlight the versatility, adaptability, and applicability of the AgNWs/MXene/rGO-coated paper-based capacitive pressure sensor for fabricating biodegradable wearable sensors.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100672"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266689392500012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nonbiodegradable polymers widely used in wearable electronics and sensors contribute significantly to e-waste and environmental toxicity. While the integration of biodegradable biopolymers offers a promising solution, their application is hindered by challenges in achieving reliable conductivity, sensitivity, and stability. In this study, we develop a biodegradable cellulose paper pressure sensor coated with silver nanowires (AgNWs), Ti3C2Tx (MXene), and reduced graphene oxide (rGO). The AgNWs/MXene/rGO-coated cellulose paper capacitive pressure sensor demonstrates high sensitivity (1.031 kPa−1) over a wide pressure range (0–40 kPa), remarkable robustness (5000 cycles), and excellent sensing stability (>44 days). Moreover, the incorporation of rGO nanosheets enhances the resistance and stability of the AgNWs/MXene-coated paper-based composite against oxidation. Furthermore, various sensory architectures, including origami butterfly and kirigami snowflake pressure sensors, have been demonstrated using AgNWs/MXene/rGO-coated cellulose paper for a wide range of physiological sensing applications. These diverse applications highlight the versatility, adaptability, and applicability of the AgNWs/MXene/rGO-coated paper-based capacitive pressure sensor for fabricating biodegradable wearable sensors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信