Li counterion-exchanged TEMPO-oxidized cellulose nanofibers as a copper electrode seal for short-circuit failure inhibition

IF 6.2 Q1 CHEMISTRY, APPLIED
Chenyang Li, Hitomi Yagyu, Shun Ishioka, Takaaki Kasuga, Hirotaka Koga, Masaya Nogi
{"title":"Li counterion-exchanged TEMPO-oxidized cellulose nanofibers as a copper electrode seal for short-circuit failure inhibition","authors":"Chenyang Li,&nbsp;Hitomi Yagyu,&nbsp;Shun Ishioka,&nbsp;Takaaki Kasuga,&nbsp;Hirotaka Koga,&nbsp;Masaya Nogi","doi":"10.1016/j.carpta.2024.100648","DOIUrl":null,"url":null,"abstract":"<div><div>Short-circuit failure caused by water or moisture should be avoided in electronic devices. Traditionally, electrodes are sealed with epoxy resin to prevent failure. We previously reported that sealing copper electrodes with sodium-type 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCNs) inhibited failure. Sodium carboxylate groups in TOCNs are counterion-exchangeable, and then ion exchange in TOCNs changes their properties, such as hydrophilicity, and oxygen permeability. In this study, we evaluated the properties of different ion-exchanged TOCNs as copper electrode seals. TOCN ion-exchanged with lithium carboxyl groups (TOCN–Li) showed equivalent water swelling ability with TOCNs with sodium carboxylate groups (TOCN–Na). Therefore, the TOCN–Li-sealed electrodes successfully prevented short circuit, as long as the TOCN–Na. Moreover, TOCN–Li layers have low coefficient of thermal expansion that limits the thermal exfoliation of the substrates, high adhesion strength that prevents physical peeling from substrates, and self-extinguishing, inhibits burning. These findings are expected to accelerate the development of sustainable electronic devices.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100648"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924002287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Short-circuit failure caused by water or moisture should be avoided in electronic devices. Traditionally, electrodes are sealed with epoxy resin to prevent failure. We previously reported that sealing copper electrodes with sodium-type 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCNs) inhibited failure. Sodium carboxylate groups in TOCNs are counterion-exchangeable, and then ion exchange in TOCNs changes their properties, such as hydrophilicity, and oxygen permeability. In this study, we evaluated the properties of different ion-exchanged TOCNs as copper electrode seals. TOCN ion-exchanged with lithium carboxyl groups (TOCN–Li) showed equivalent water swelling ability with TOCNs with sodium carboxylate groups (TOCN–Na). Therefore, the TOCN–Li-sealed electrodes successfully prevented short circuit, as long as the TOCN–Na. Moreover, TOCN–Li layers have low coefficient of thermal expansion that limits the thermal exfoliation of the substrates, high adhesion strength that prevents physical peeling from substrates, and self-extinguishing, inhibits burning. These findings are expected to accelerate the development of sustainable electronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信