Insights into greener Miocene biomes and globally enhanced terrestrial productivity from fossil leaves

Tammo Reichgelt , Christopher K. West
{"title":"Insights into greener Miocene biomes and globally enhanced terrestrial productivity from fossil leaves","authors":"Tammo Reichgelt ,&nbsp;Christopher K. West","doi":"10.1016/j.eve.2025.100058","DOIUrl":null,"url":null,"abstract":"<div><div>Leaf megafloras represent a snapshot of local environmental conditions in Earth's history. As such, they are an important way to understand terrestrial climate analogues for future warmer climate scenarios. Here, we present paleoclimate, productivity, and biome reconstructions of 108 globally distributed Miocene leaf megafloras using a standardized method based on leaf physiognomy. Our results show that the Miocene had higher than modern zonal temperature, precipitation and net primary productivity (NPP) averages, especially for precipitation at latitudes &gt;30°N/°S, suggesting enhanced poleward moisture transport in both hemispheres and a greener biosphere. There is a dearth of Miocene data in the tropics and notably an absence of data points in equatorial localities that have high modern NPP (rainforests), which makes a direct comparison complicated. 89% of investigated sites underwent a precipitation decrease from the Miocene to modern, whereas 66% underwent a temperature decrease, and 60% underwent both a precipitation and a temperature decrease. 67% of sites had more productive biomes during the Miocene than today. Most notably, forested biomes were replaced by more open woodland/shrubland or grassland biomes. Correspondingly, the average NPP decrease from the Miocene to today of our investigated localities was conservatively ∼250 gC m<sup>−2</sup> yr<sup>−1</sup> or ∼450 gC m<sup>−2</sup> yr<sup>−1</sup> by comparison of zonal averages. Considered collectively, leaf megafloras reveal an overall greener Miocene world that appears to be largely driven by greater moisture availability.</div></div>","PeriodicalId":100516,"journal":{"name":"Evolving Earth","volume":"3 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Earth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950117225000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leaf megafloras represent a snapshot of local environmental conditions in Earth's history. As such, they are an important way to understand terrestrial climate analogues for future warmer climate scenarios. Here, we present paleoclimate, productivity, and biome reconstructions of 108 globally distributed Miocene leaf megafloras using a standardized method based on leaf physiognomy. Our results show that the Miocene had higher than modern zonal temperature, precipitation and net primary productivity (NPP) averages, especially for precipitation at latitudes >30°N/°S, suggesting enhanced poleward moisture transport in both hemispheres and a greener biosphere. There is a dearth of Miocene data in the tropics and notably an absence of data points in equatorial localities that have high modern NPP (rainforests), which makes a direct comparison complicated. 89% of investigated sites underwent a precipitation decrease from the Miocene to modern, whereas 66% underwent a temperature decrease, and 60% underwent both a precipitation and a temperature decrease. 67% of sites had more productive biomes during the Miocene than today. Most notably, forested biomes were replaced by more open woodland/shrubland or grassland biomes. Correspondingly, the average NPP decrease from the Miocene to today of our investigated localities was conservatively ∼250 gC m−2 yr−1 or ∼450 gC m−2 yr−1 by comparison of zonal averages. Considered collectively, leaf megafloras reveal an overall greener Miocene world that appears to be largely driven by greater moisture availability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信