Zinc-chitosan nanocomposites as guardians against the dreaded phytopathogenic fungus Macrophomina phaseolina in Vigna radiata L.

IF 6.8 Q1 PLANT SCIENCES
Uswa Fatima , Amna Shoaib , Qudsia Fatima , Abdulaziz Abdullah Alsahli , Parvaiz Ahmad
{"title":"Zinc-chitosan nanocomposites as guardians against the dreaded phytopathogenic fungus Macrophomina phaseolina in Vigna radiata L.","authors":"Uswa Fatima ,&nbsp;Amna Shoaib ,&nbsp;Qudsia Fatima ,&nbsp;Abdulaziz Abdullah Alsahli ,&nbsp;Parvaiz Ahmad","doi":"10.1016/j.stress.2024.100710","DOIUrl":null,"url":null,"abstract":"<div><div><em>Macrophomina phaseolina,</em> a phytopathogenic fungus responsible for root rot in mung beans (<em>Vigna radiata</em> L.), produces resilient sclerotia that are not effectively managed by chemical fungicides. In this study, as an alternative management approach, zinc-chitosan nanoparticles (Zn-ChNPs) were prepared using the ionic gelation method and evaluated for their antifungal activity against <em>M. phaseolina.</em> The synthesis of Zn-ChNPs was confirmed by UV–visible spectroscopy with absorption peaks at 215 nm and 265 nm. XRD indicated hexagonal crystalline planes, verifying nanoparticle crystallinity, while FTIR showed strong ZnO-chitosan interactions with peaks at 3495 cm⁻¹ and 678 cm⁻¹. The particles averaged 80–100 nm in size<em>.</em> Antifungal bioassays demonstrated significant inhibition of fungal growth, achieving 50–100 % reduction at concentrations of 0.11 % and above, and an EC<sub>50</sub> (effective concentration) value of 0.08 %. Microscopic analysis revealed sclerotia distortion at 0.15 % Zn-ChNPs, while enzymatic assays showed a 20–60 % increase in catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase activities at concentrations of 0.03–0.11 %, followed by a sharp decrease beyond 0.11 %. <em>In planta</em> bioassays indicated that 0.4–0.6 % Zn-ChNPs reduced disease by 97 % and improved growth up to 100 %, surpassing the performance of chemical fungicides (Carbendazim). Multivariate analysis further underscored the superior efficacy of Zn-ChNPs in enhancing plant defense mechanisms and managing root rot disease. These findings highlighted the potential of Zn-ChNPs as a sustainable and effective alternative to chemical fungicides, offering dual benefits of disease control and growth enhancement in mung bean plants.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100710"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophomina phaseolina, a phytopathogenic fungus responsible for root rot in mung beans (Vigna radiata L.), produces resilient sclerotia that are not effectively managed by chemical fungicides. In this study, as an alternative management approach, zinc-chitosan nanoparticles (Zn-ChNPs) were prepared using the ionic gelation method and evaluated for their antifungal activity against M. phaseolina. The synthesis of Zn-ChNPs was confirmed by UV–visible spectroscopy with absorption peaks at 215 nm and 265 nm. XRD indicated hexagonal crystalline planes, verifying nanoparticle crystallinity, while FTIR showed strong ZnO-chitosan interactions with peaks at 3495 cm⁻¹ and 678 cm⁻¹. The particles averaged 80–100 nm in size. Antifungal bioassays demonstrated significant inhibition of fungal growth, achieving 50–100 % reduction at concentrations of 0.11 % and above, and an EC50 (effective concentration) value of 0.08 %. Microscopic analysis revealed sclerotia distortion at 0.15 % Zn-ChNPs, while enzymatic assays showed a 20–60 % increase in catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase activities at concentrations of 0.03–0.11 %, followed by a sharp decrease beyond 0.11 %. In planta bioassays indicated that 0.4–0.6 % Zn-ChNPs reduced disease by 97 % and improved growth up to 100 %, surpassing the performance of chemical fungicides (Carbendazim). Multivariate analysis further underscored the superior efficacy of Zn-ChNPs in enhancing plant defense mechanisms and managing root rot disease. These findings highlighted the potential of Zn-ChNPs as a sustainable and effective alternative to chemical fungicides, offering dual benefits of disease control and growth enhancement in mung bean plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信