Complementary infrared imaging methods for the structural and technical analysis of a panel painting: Adoration of the Magi by Marco Cardisco

IF 3.1 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION
Antimo Di Meo , Barbara Balbi , Marco Casciello , Maria Rosaria Vigorito , Pasquale Mormile , Massimo Rippa
{"title":"Complementary infrared imaging methods for the structural and technical analysis of a panel painting: Adoration of the Magi by Marco Cardisco","authors":"Antimo Di Meo ,&nbsp;Barbara Balbi ,&nbsp;Marco Casciello ,&nbsp;Maria Rosaria Vigorito ,&nbsp;Pasquale Mormile ,&nbsp;Massimo Rippa","doi":"10.1016/j.infrared.2024.105705","DOIUrl":null,"url":null,"abstract":"<div><div>Today, digital imaging techniques are extensively used as non-invasive tools for studying and analyzing artworks in the field of cultural heritage These methods provide critical structural information that supports conservation efforts or the development of the most appropriate restoration strategies. Among the case studies, the analysis of panel paintings represents a challenging task, requiring the use of suitable and complementary diagnostic approaches to achieve a comprehensive understanding of the artwork’s condition and its technical characteristics. Imaging techniques operating in the infrared spectrum are reliable, non-invasive, and non-contact methods for performing in situ analyses of artworks. In this study, we examined a 16th-century panel painting by Marco Cardisco, titled Adoration of the Magi, using both infrared reflectography (IRR) and active thermography (AT) techniques. For the AT approach, we applied a low-power pulsed thermal stimulation and analyzed the acquired thermal images in both spatial and temporal domains by combining the results achieved through Principal Component Thermography (PCT) and Thermal Recovery Trend (TRT) methods. The data collected from the two infrared imaging techniques, IRR and AT, were compared and evaluated across different areas of the painting, discussing and demonstrating their complementarity. This combined approach provided valuable insights into the technical and structural features of the artwork, thereby enhancing our understanding of its condition and state of conservation.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"145 ","pages":"Article 105705"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524005899","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Today, digital imaging techniques are extensively used as non-invasive tools for studying and analyzing artworks in the field of cultural heritage These methods provide critical structural information that supports conservation efforts or the development of the most appropriate restoration strategies. Among the case studies, the analysis of panel paintings represents a challenging task, requiring the use of suitable and complementary diagnostic approaches to achieve a comprehensive understanding of the artwork’s condition and its technical characteristics. Imaging techniques operating in the infrared spectrum are reliable, non-invasive, and non-contact methods for performing in situ analyses of artworks. In this study, we examined a 16th-century panel painting by Marco Cardisco, titled Adoration of the Magi, using both infrared reflectography (IRR) and active thermography (AT) techniques. For the AT approach, we applied a low-power pulsed thermal stimulation and analyzed the acquired thermal images in both spatial and temporal domains by combining the results achieved through Principal Component Thermography (PCT) and Thermal Recovery Trend (TRT) methods. The data collected from the two infrared imaging techniques, IRR and AT, were compared and evaluated across different areas of the painting, discussing and demonstrating their complementarity. This combined approach provided valuable insights into the technical and structural features of the artwork, thereby enhancing our understanding of its condition and state of conservation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
12.10%
发文量
400
审稿时长
67 days
期刊介绍: The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine. Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信