Molecular dynamics modeling in catalyst layer development for PEM fuel cell

IF 32 1区 工程技术 Q1 ENERGY & FUELS
Linhao Fan , Jiaqi Wang , Daniela Fernanda Ruiz Diaz , Lincai Li , Yun Wang , Kui Jiao
{"title":"Molecular dynamics modeling in catalyst layer development for PEM fuel cell","authors":"Linhao Fan ,&nbsp;Jiaqi Wang ,&nbsp;Daniela Fernanda Ruiz Diaz ,&nbsp;Lincai Li ,&nbsp;Yun Wang ,&nbsp;Kui Jiao","doi":"10.1016/j.pecs.2025.101220","DOIUrl":null,"url":null,"abstract":"<div><div>Catalyst layers (CLs) are a key component of proton exchange membrane (PEM) fuel cells, where electrochemical reactions occur. The future development of catalysts, catalyst supports, ionomer electrolytes, and CL architectures, along with their preparation, is of great importance for achieving high-performance and low-cost PEM fuel cells. Developing novel CLs involves complex multi-parameter optimization, posing significant challenges for time-consuming experiments. Due to CL's nanoscale structures, molecular dynamics (MD) simulation is an appropriate method to investigate transport and structural characteristics in CLs, playing an crucial role in CL development. This review aims at the fundamentals of MD simulations, overview of MD simulations in CL applications, latest developments of catalysts, catalyst support, ionomer materials, CL architectures, and roles of MD in CL development, as well as associated challenges and prospects. This review is invaluable for guiding researchers in understanding the mechanisms of transport and structural evolution mechanisms in CLs and developing novel CLs through MD modeling.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"108 ","pages":"Article 101220"},"PeriodicalIF":32.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128525000127","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Catalyst layers (CLs) are a key component of proton exchange membrane (PEM) fuel cells, where electrochemical reactions occur. The future development of catalysts, catalyst supports, ionomer electrolytes, and CL architectures, along with their preparation, is of great importance for achieving high-performance and low-cost PEM fuel cells. Developing novel CLs involves complex multi-parameter optimization, posing significant challenges for time-consuming experiments. Due to CL's nanoscale structures, molecular dynamics (MD) simulation is an appropriate method to investigate transport and structural characteristics in CLs, playing an crucial role in CL development. This review aims at the fundamentals of MD simulations, overview of MD simulations in CL applications, latest developments of catalysts, catalyst support, ionomer materials, CL architectures, and roles of MD in CL development, as well as associated challenges and prospects. This review is invaluable for guiding researchers in understanding the mechanisms of transport and structural evolution mechanisms in CLs and developing novel CLs through MD modeling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信