Bio-activation and mathematical modeling of ZIF-L encapsulated with laccase for enhanced ibuprofen removal from wastewater

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Ayat Hassan , Shadi W. Hasan , Bart Van der Bruggen , Sulaiman Al-Zuhair
{"title":"Bio-activation and mathematical modeling of ZIF-L encapsulated with laccase for enhanced ibuprofen removal from wastewater","authors":"Ayat Hassan ,&nbsp;Shadi W. Hasan ,&nbsp;Bart Van der Bruggen ,&nbsp;Sulaiman Al-Zuhair","doi":"10.1016/j.clet.2024.100875","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the bio-activation of zeolitic imidazolate framework (ZIF-L) by laccase encapsulation for enhanced performance of emerging pollutant removal from wastewater. ZIF-L exhibits high surface area, porosity, and selective adsorption characteristics, which contribute to its effective adsorption of ibuprofen. Under the same conditions, the ibuprofen removal increased from 50% using bare ZIF-L to 83% using bio-activated ZIF-L. The Kinetics and thermodynamics of ibuprofen adsorption on ZIF-L were studied and mathematically modeled. The effect of laccase encapsulation inside the ZIF-L crystals was thoroughly investigated using a diffusion-reaction model, which was solved numerically using a finite difference explicit scheme. The results showed deep ibuprofen penetration within the ZIF-L crystal containing encapsulated laccase. The bio-activated ZIF-L was used in a fixed-bed column to study the continuous removal of ibuprofen. The dynamic behavior of the continuous fixed-bed system was mathematically modeled to predict the concentration profiles and breakthrough curves at various initial ibuprofen concentrations. This study presents a novel approach demonstrating the positive effect of laccase catalytic activity in enhancing the performance of ZIF-L as an adsorbent for ibuprofen removal. The approach offers an effective, economical, and environmentally friendly method to remove emerging pollutants from wastewater.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"24 ","pages":"Article 100875"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824001551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the bio-activation of zeolitic imidazolate framework (ZIF-L) by laccase encapsulation for enhanced performance of emerging pollutant removal from wastewater. ZIF-L exhibits high surface area, porosity, and selective adsorption characteristics, which contribute to its effective adsorption of ibuprofen. Under the same conditions, the ibuprofen removal increased from 50% using bare ZIF-L to 83% using bio-activated ZIF-L. The Kinetics and thermodynamics of ibuprofen adsorption on ZIF-L were studied and mathematically modeled. The effect of laccase encapsulation inside the ZIF-L crystals was thoroughly investigated using a diffusion-reaction model, which was solved numerically using a finite difference explicit scheme. The results showed deep ibuprofen penetration within the ZIF-L crystal containing encapsulated laccase. The bio-activated ZIF-L was used in a fixed-bed column to study the continuous removal of ibuprofen. The dynamic behavior of the continuous fixed-bed system was mathematically modeled to predict the concentration profiles and breakthrough curves at various initial ibuprofen concentrations. This study presents a novel approach demonstrating the positive effect of laccase catalytic activity in enhancing the performance of ZIF-L as an adsorbent for ibuprofen removal. The approach offers an effective, economical, and environmentally friendly method to remove emerging pollutants from wastewater.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信