{"title":"Generalized entropy implies varying-G: Horizon area dependent field equations and black hole-cosmology coupling","authors":"Hengxin Lü , Sofia Di Gennaro , Yen Chin Ong","doi":"10.1016/j.aop.2024.169914","DOIUrl":null,"url":null,"abstract":"<div><div>When the Bekenstein–Hawking entropy is modified, ambiguity often arises concerning whether the Hawking temperature or the thermodynamic mass should be modified. The common practice, however, is to keep the black hole solution the same as that in general relativity. On the other hand, if Jacobson’s method of deriving Einstein equations from thermodynamic is valid in the general settings, then given a generalized entropy one should first derive the corresponding modified gravity, and then look for the compatible black hole solution before investigating its thermodynamics. We comment on some properties and subtleties in this approach. In particular, we point out that generically generalized entropy would lead to a varying effective gravitational “constant” theory, in which <span><math><msub><mrow><mi>G</mi></mrow><mrow><mtext>eff</mtext></mrow></msub></math></span> depends on the horizon area. We discuss in what ways such theories are discernible from general relativity despite its seemingly jarring differences, and how to make sense of area-dependent field equations. As a consequence we show that in the Jacobson’s approach, the standard quantum gravitational logarithmic correction to Bekenstein–Hawking entropy is equivalent to a running gravitational “constant”. A horizon area dependent <span><math><msub><mrow><mi>G</mi></mrow><mrow><mtext>eff</mtext></mrow></msub></math></span> could also lead to a coupling between black hole masses and cosmological expansion, a scenario that has been studied recently in the literature, but so far lacks strong theoretical motivation. In the Tsallis case, we show that the thermodynamic mass for a Schwarzschild black hole is just a constant multiple of its ADM mass, which is considerably simpler than the approach not utilizing the Jacobson’s method.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"474 ","pages":"Article 169914"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000349162400321X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
When the Bekenstein–Hawking entropy is modified, ambiguity often arises concerning whether the Hawking temperature or the thermodynamic mass should be modified. The common practice, however, is to keep the black hole solution the same as that in general relativity. On the other hand, if Jacobson’s method of deriving Einstein equations from thermodynamic is valid in the general settings, then given a generalized entropy one should first derive the corresponding modified gravity, and then look for the compatible black hole solution before investigating its thermodynamics. We comment on some properties and subtleties in this approach. In particular, we point out that generically generalized entropy would lead to a varying effective gravitational “constant” theory, in which depends on the horizon area. We discuss in what ways such theories are discernible from general relativity despite its seemingly jarring differences, and how to make sense of area-dependent field equations. As a consequence we show that in the Jacobson’s approach, the standard quantum gravitational logarithmic correction to Bekenstein–Hawking entropy is equivalent to a running gravitational “constant”. A horizon area dependent could also lead to a coupling between black hole masses and cosmological expansion, a scenario that has been studied recently in the literature, but so far lacks strong theoretical motivation. In the Tsallis case, we show that the thermodynamic mass for a Schwarzschild black hole is just a constant multiple of its ADM mass, which is considerably simpler than the approach not utilizing the Jacobson’s method.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.