{"title":"Higher-order adaptive dynamical system modelling of epigenetic mechanisms in infant temperament shaped by prenatal maternal stress","authors":"Labiba Aziz , Jan Treur","doi":"10.1016/j.cogsys.2024.101315","DOIUrl":null,"url":null,"abstract":"<div><div>Prenatal maternal stress (PNMS) has significant implications for infant temperament, primarily through alterations in the hypothalamic–pituitary–adrenal (HPA) axis and epigenetic mechanisms. This study explores the effects of PNMS on infant stress reactivity using a fifth-order adaptive dynamical system model. The model integrates genetic, epigenetic, and environmental factors, focusing on the downregulation of 11β-HSD-2, an enzyme responsible for converting active cortisol to its inactive form, and its subsequent influence on fetal cortisol exposure. The article also employs network-oriented modeling to represent epigenetic changes and their impact on infant temperament development, emphasizing the HPA axis’ role in stress regulation. Simulation experiments compare scenarios with PNMS, illustrating the long-term developmental consequences on temperament. This research highlights the importance of maternal well-being during pregnancy in shaping infant stress responses and provides insights into the developmental origins of health and disease.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"90 ","pages":"Article 101315"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724001098","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Prenatal maternal stress (PNMS) has significant implications for infant temperament, primarily through alterations in the hypothalamic–pituitary–adrenal (HPA) axis and epigenetic mechanisms. This study explores the effects of PNMS on infant stress reactivity using a fifth-order adaptive dynamical system model. The model integrates genetic, epigenetic, and environmental factors, focusing on the downregulation of 11β-HSD-2, an enzyme responsible for converting active cortisol to its inactive form, and its subsequent influence on fetal cortisol exposure. The article also employs network-oriented modeling to represent epigenetic changes and their impact on infant temperament development, emphasizing the HPA axis’ role in stress regulation. Simulation experiments compare scenarios with PNMS, illustrating the long-term developmental consequences on temperament. This research highlights the importance of maternal well-being during pregnancy in shaping infant stress responses and provides insights into the developmental origins of health and disease.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.