Performance optimization of ZnO nanowire/parylene-C composite-based piezoelectric nanogenerators

Manuel Manrique , Vincent Consonni , Gustavo Ardila , Aymen Ghouma , Gwenaël Le Rhun , Bassem Salem
{"title":"Performance optimization of ZnO nanowire/parylene-C composite-based piezoelectric nanogenerators","authors":"Manuel Manrique ,&nbsp;Vincent Consonni ,&nbsp;Gustavo Ardila ,&nbsp;Aymen Ghouma ,&nbsp;Gwenaël Le Rhun ,&nbsp;Bassem Salem","doi":"10.1016/j.nwnano.2024.100066","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric nanogenerators (PNGs) based on ZnO nanowires embedded in a polymer matrix have shown great promise in converting ambient mechanical energy into electrical energy, positioning them as candidates for autonomous sensor applications. Here, we fabricate vertically integrated ZnO NW/parylene-C composite-based PNGs using a capacitive configuration. By carefully controlling the thickness of the parylene-C top layer over ZnO nanowire arrays, four PNGs with parylene-C top layer thicknesses ranging from 1.1 to 3.2 µm were successfully fabricated. Raman spectroscopy suggests that the parylene-C does not affect the crystallographic properties of ZnO nanowires when coated. In addition, electrical impedance measurements reveal that increasing the parylene-C top layer thickness decreases the PNG capacitance, leading to higher internal impedance. The performance of these PNGs is assessed through piezoelectric characterizations across a range of load resistances, from 50 kΩ to 122 MΩ, under vertical compression forces of 1 N applied at 0.2 Hz. These tests have identified an optimal parylene-C top layer thickness of around 2 µm, resulting in an instantaneous power density of 1.8 µW/cm<sup>3</sup> generated by the PNG. These findings highlight promising pathways for enhancing the efficiency and performance of PNGs.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric nanogenerators (PNGs) based on ZnO nanowires embedded in a polymer matrix have shown great promise in converting ambient mechanical energy into electrical energy, positioning them as candidates for autonomous sensor applications. Here, we fabricate vertically integrated ZnO NW/parylene-C composite-based PNGs using a capacitive configuration. By carefully controlling the thickness of the parylene-C top layer over ZnO nanowire arrays, four PNGs with parylene-C top layer thicknesses ranging from 1.1 to 3.2 µm were successfully fabricated. Raman spectroscopy suggests that the parylene-C does not affect the crystallographic properties of ZnO nanowires when coated. In addition, electrical impedance measurements reveal that increasing the parylene-C top layer thickness decreases the PNG capacitance, leading to higher internal impedance. The performance of these PNGs is assessed through piezoelectric characterizations across a range of load resistances, from 50 kΩ to 122 MΩ, under vertical compression forces of 1 N applied at 0.2 Hz. These tests have identified an optimal parylene-C top layer thickness of around 2 µm, resulting in an instantaneous power density of 1.8 µW/cm3 generated by the PNG. These findings highlight promising pathways for enhancing the efficiency and performance of PNGs.

Abstract Image

ZnO纳米线/聚苯乙烯- c复合压电纳米发电机的性能优化
基于ZnO纳米线嵌入聚合物基体的压电纳米发电机(PNGs)在将环境机械能转换为电能方面显示出巨大的前景,使其成为自主传感器应用的候选者。在这里,我们使用电容结构制造垂直集成的ZnO NW/聚苯乙烯- c复合材料为基础的png。通过仔细控制ZnO纳米线阵列上聚苯乙烯- c顶层的厚度,成功制备了四种聚苯乙烯- c顶层厚度在1.1 ~ 3.2µm之间的纳米材料。拉曼光谱分析表明,涂覆后,聚苯二烯- c不影响ZnO纳米线的晶体学性能。此外,电阻抗测量表明,增加聚苯乙烯- c顶层厚度会降低PNG电容,导致更高的内部阻抗。通过在0.2 Hz下施加1 N的垂直压缩力下,在50 kΩ至122 MΩ的负载阻力范围内对这些png的性能进行了压电特性评估。这些测试确定了最佳的聚苯乙烯- c顶层厚度约为2 μ m,从而使PNG产生的瞬时功率密度为1.8 μ W/cm3。这些发现突出了提高png效率和性能的有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信