{"title":"Synthesis and characterizations of MnO2/CNT nanocomposite for usage as electrodes in high-performance supercapacitor","authors":"Garima Srivastava , Ravina , Saurabh Dalela , Nitin Kumar Gautam , Shalendra Kumar , S.Z. Hashmi , M. Ayaz Ahmad , A.M. Quraishi , Virat Khanna , P.A. Alvi","doi":"10.1016/j.nwnano.2024.100067","DOIUrl":null,"url":null,"abstract":"<div><div>Taking into account the unique characteristics of MnO<sub>2</sub> (manganese oxide) nanoparticles and their exceptional physicochemical properties, which make them useful in energy storage devices like supercapacitors, this article has focused the synthesis and characterizations of MWCNT/MnO<sub>2</sub> nanocomposites with different wt. % of MWCNTs. In the present article, the hydrothermal method was used to create MWCNT/MnO<sub>2</sub> nanocomposites. The information regarding structure, Raman bands, functional groups, optical bandgap, and surface characteristics was obtained using an XRD tool, a Raman spectrometer, an FTIR spectrometer, a UV–Vis-NIR spectrometer, and a FE-SEM with EDX, in that order. Moreover, the electrochemical characteristics have been examined using galvanic charge-discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Using XRD, the structural characteristics were retrieved and rejected the possibility of any secondary phases with the determined crystallite size of 22 nm for 1wt.% MWCNT/MnO<sub>2</sub> nanocomposite. Additionally, the material underwent Raman tests indicating all the vibrational modes of MWCNT/MnO<sub>2</sub> nanocomposite including -COOH, -OH, -C-O, -C=C and Mn-O respectively. From CV, the specific capacitance was found highest for 1wt.% MWCNT/MnO<sub>2</sub> nanocomposite ∼729.8F/g at 5mV/s scan rate and from GCD graph it was ∼ 405.5 F/g. EIS spectra confirmed R<sub>s</sub> and R<sub>ct</sub> values for 1wt.% MWCNT/MnO<sub>2</sub> nanocomposite ∼ 5.57Ω and 15.60Ω, respectively. Thus, keeping in view the above results, the MnO<sub>2</sub>/CNT nanocomposites can be utilized as an anode material for energy storage applications.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100067"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Taking into account the unique characteristics of MnO2 (manganese oxide) nanoparticles and their exceptional physicochemical properties, which make them useful in energy storage devices like supercapacitors, this article has focused the synthesis and characterizations of MWCNT/MnO2 nanocomposites with different wt. % of MWCNTs. In the present article, the hydrothermal method was used to create MWCNT/MnO2 nanocomposites. The information regarding structure, Raman bands, functional groups, optical bandgap, and surface characteristics was obtained using an XRD tool, a Raman spectrometer, an FTIR spectrometer, a UV–Vis-NIR spectrometer, and a FE-SEM with EDX, in that order. Moreover, the electrochemical characteristics have been examined using galvanic charge-discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Using XRD, the structural characteristics were retrieved and rejected the possibility of any secondary phases with the determined crystallite size of 22 nm for 1wt.% MWCNT/MnO2 nanocomposite. Additionally, the material underwent Raman tests indicating all the vibrational modes of MWCNT/MnO2 nanocomposite including -COOH, -OH, -C-O, -C=C and Mn-O respectively. From CV, the specific capacitance was found highest for 1wt.% MWCNT/MnO2 nanocomposite ∼729.8F/g at 5mV/s scan rate and from GCD graph it was ∼ 405.5 F/g. EIS spectra confirmed Rs and Rct values for 1wt.% MWCNT/MnO2 nanocomposite ∼ 5.57Ω and 15.60Ω, respectively. Thus, keeping in view the above results, the MnO2/CNT nanocomposites can be utilized as an anode material for energy storage applications.