{"title":"Exploring the impact of modulation of electronic structure via doping in the realm of environmental applications","authors":"U Sandhya Shenoy , Bhava Amin , D Krishna Bhat","doi":"10.1016/j.nwnano.2025.100075","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering the electronic structure of a material is quite a fascinating field of study as it not only helps in improving the performance of the material but also helps us understand why a particular combination of elements exhibits the properties it does. Substitutional doping has been receiving increasing interest in the field of photocatalysis for boosting the performance of the material by tuning its crystal structure and electronic structure. In this study, we report the effect of site occupancy of silver in Ag doped BaTiO<sub>3</sub>. First principles density functional theory calculations highlight that the Ti site which is the preferred site in BaTiO<sub>3</sub> for most of the dopants is not so preferred in the case of Ag doping for enhancing the photocatalytic activity. It also reveals the exceptional behavior of Ag where in it prevents the formation of mid gap recombination centers in the case of mixed occupancy. Doped samples synthesized through solvothermal approach with directed doping shows activity of 99.2 % and 99 % degradation of rose bengal and malachite green dyes in 40 and 50 min, respectively.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978125000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering the electronic structure of a material is quite a fascinating field of study as it not only helps in improving the performance of the material but also helps us understand why a particular combination of elements exhibits the properties it does. Substitutional doping has been receiving increasing interest in the field of photocatalysis for boosting the performance of the material by tuning its crystal structure and electronic structure. In this study, we report the effect of site occupancy of silver in Ag doped BaTiO3. First principles density functional theory calculations highlight that the Ti site which is the preferred site in BaTiO3 for most of the dopants is not so preferred in the case of Ag doping for enhancing the photocatalytic activity. It also reveals the exceptional behavior of Ag where in it prevents the formation of mid gap recombination centers in the case of mixed occupancy. Doped samples synthesized through solvothermal approach with directed doping shows activity of 99.2 % and 99 % degradation of rose bengal and malachite green dyes in 40 and 50 min, respectively.