{"title":"A hybrid interpolating element-free Galerkin method for 3D steady-state convection diffusion problems","authors":"Yujun Cheng , Miaojuan Peng , Yumin Cheng","doi":"10.1016/j.apnum.2024.09.024","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates a hybrid interpolating element-free Galerkin (HIEFG) method for solving 3D convection diffusion problems. The HIEFG approach divides a 3D solution domain into a sequence of interconnected 2D sub-domains, and in these 2D sub-domains, the interpolating element-free Galerkin (IEFG) method is applied to form the discretized equations. The improved interpolating moving least-squares (IMLS) method is used to obtain the shape function of the IEFG method for 2D problems. The finite difference method is employed to combine the discretized equations in 2D sub-domains in the splitting direction. Then, the HIEFG method's formulas are derived for steady-state convection diffusion problems in 3D solution domain. Three numerical examples are used to discuss the impacts of the number of nodes, the number of split layers, and the scaling parameters of the influence domain on the computational precision and CPU time of the HIEFG technique. Imposing boundary conditions directly and the dimension splitting technique in this method significantly improves the computational speed greatly.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 21-37"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002605","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates a hybrid interpolating element-free Galerkin (HIEFG) method for solving 3D convection diffusion problems. The HIEFG approach divides a 3D solution domain into a sequence of interconnected 2D sub-domains, and in these 2D sub-domains, the interpolating element-free Galerkin (IEFG) method is applied to form the discretized equations. The improved interpolating moving least-squares (IMLS) method is used to obtain the shape function of the IEFG method for 2D problems. The finite difference method is employed to combine the discretized equations in 2D sub-domains in the splitting direction. Then, the HIEFG method's formulas are derived for steady-state convection diffusion problems in 3D solution domain. Three numerical examples are used to discuss the impacts of the number of nodes, the number of split layers, and the scaling parameters of the influence domain on the computational precision and CPU time of the HIEFG technique. Imposing boundary conditions directly and the dimension splitting technique in this method significantly improves the computational speed greatly.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.