Transmission through Cantor structured Dirac comb potential

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Mohammad Umar
{"title":"Transmission through Cantor structured Dirac comb potential","authors":"Mohammad Umar","doi":"10.1016/j.aop.2025.169923","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we introduce the Cantor-structured Dirac comb potential, referred to as the Cantor Dirac comb (CDC-<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>) potential system, and investigate non-relativistic quantum tunneling through this novel potential configuration. This system is engineered by positioning delta potentials at the boundaries of each rectangular potential segment of Cantor potential. This study is the first to investigate quantum tunneling through a fractal geometric Dirac comb potential. This potential system exemplifies a particular instance of the super periodic potential (SPP), a broader class of potentials that generalize locally periodic potentials. Utilizing the theoretical framework of SPP, we derived a closed-form expression for the transmission probability for this potential architecture. We report various transmission characteristics, including the appearance of band-like features and the scaling behavior of the reflection coefficient with wave vector <span><math><mi>k</mi></math></span>, which is governed by a scaling function expressed as a finite product of the Laue function. A particularly striking feature of the system is the occurrence of sharp transmission resonances, which may prove useful in applications such as highly sharp transmission filters.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"474 ","pages":"Article 169923"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625000041","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce the Cantor-structured Dirac comb potential, referred to as the Cantor Dirac comb (CDC-ρN) potential system, and investigate non-relativistic quantum tunneling through this novel potential configuration. This system is engineered by positioning delta potentials at the boundaries of each rectangular potential segment of Cantor potential. This study is the first to investigate quantum tunneling through a fractal geometric Dirac comb potential. This potential system exemplifies a particular instance of the super periodic potential (SPP), a broader class of potentials that generalize locally periodic potentials. Utilizing the theoretical framework of SPP, we derived a closed-form expression for the transmission probability for this potential architecture. We report various transmission characteristics, including the appearance of band-like features and the scaling behavior of the reflection coefficient with wave vector k, which is governed by a scaling function expressed as a finite product of the Laue function. A particularly striking feature of the system is the occurrence of sharp transmission resonances, which may prove useful in applications such as highly sharp transmission filters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信