Automated image-based identification and consistent classification of fire patterns with quantitative shape analysis and spatial location identification

IF 8.2 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Pengkun Liu , Shuna Ni , Stoliarov Stanislav I , Pingbo Tang
{"title":"Automated image-based identification and consistent classification of fire patterns with quantitative shape analysis and spatial location identification","authors":"Pengkun Liu ,&nbsp;Shuna Ni ,&nbsp;Stoliarov Stanislav I ,&nbsp;Pingbo Tang","doi":"10.1016/j.dibe.2025.100612","DOIUrl":null,"url":null,"abstract":"<div><div>Fire patterns, consisting of fire effects that offer insights into fire behavior and origin, are currently classified based on investigators' visual observations, leading to subjective interpretations. This study proposes a quantitative fire pattern classification framework to support fire investigators, aiming for consistency and accuracy. The framework integrates four components. First, it leverages human-computer interaction to extract fire patterns from surfaces, combining investigator expertise with computational analysis. Second, it employs an aspect ratio-based random forest model to classify fire pattern shapes. Third, fire scene point cloud segmentation enables identification of fire-affected areas and mapping 2D fire patterns to 3D scenes for spatial relationships analysis. Lastly, spatial relationships between fire patterns and elements support an interpretation of fire scenes. These components provide pattern analysis that synthesizes qualitative and quantitative data. The framework's fire pattern shape classification results achieve 93% precision on synthetic data and 83% on real fire patterns.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"21 ","pages":"Article 100612"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165925000122","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fire patterns, consisting of fire effects that offer insights into fire behavior and origin, are currently classified based on investigators' visual observations, leading to subjective interpretations. This study proposes a quantitative fire pattern classification framework to support fire investigators, aiming for consistency and accuracy. The framework integrates four components. First, it leverages human-computer interaction to extract fire patterns from surfaces, combining investigator expertise with computational analysis. Second, it employs an aspect ratio-based random forest model to classify fire pattern shapes. Third, fire scene point cloud segmentation enables identification of fire-affected areas and mapping 2D fire patterns to 3D scenes for spatial relationships analysis. Lastly, spatial relationships between fire patterns and elements support an interpretation of fire scenes. These components provide pattern analysis that synthesizes qualitative and quantitative data. The framework's fire pattern shape classification results achieve 93% precision on synthetic data and 83% on real fire patterns.
基于图像的火灾模式自动识别和一致分类,具有定量形状分析和空间位置识别
火灾模式,包括火灾效应,提供了对火灾行为和起源的见解,目前根据调查人员的视觉观察进行分类,导致主观解释。本研究提出了一个定量的火灾模式分类框架,以支持火灾调查人员的一致性和准确性。该框架集成了四个组件。首先,它利用人机交互从表面提取火灾模式,将调查员的专业知识与计算分析相结合。其次,采用基于纵横比的随机森林模型对火灾形态进行分类。第三,火场点云分割可以识别火灾影响区域,并将二维火灾模式映射到三维场景中进行空间关系分析。最后,火灾模式和元素之间的空间关系支持对火灾场景的解释。这些组件提供综合定性和定量数据的模式分析。该框架的火种形态分类结果在合成数据上的准确率为93%,在真实火种上的准确率为83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
1.20%
发文量
31
审稿时长
22 days
期刊介绍: Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信