Automated image-based identification and consistent classification of fire patterns with quantitative shape analysis and spatial location identification
IF 6.2 2区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Pengkun Liu , Shuna Ni , Stoliarov Stanislav I , Pingbo Tang
{"title":"Automated image-based identification and consistent classification of fire patterns with quantitative shape analysis and spatial location identification","authors":"Pengkun Liu , Shuna Ni , Stoliarov Stanislav I , Pingbo Tang","doi":"10.1016/j.dibe.2025.100612","DOIUrl":null,"url":null,"abstract":"<div><div>Fire patterns, consisting of fire effects that offer insights into fire behavior and origin, are currently classified based on investigators' visual observations, leading to subjective interpretations. This study proposes a quantitative fire pattern classification framework to support fire investigators, aiming for consistency and accuracy. The framework integrates four components. First, it leverages human-computer interaction to extract fire patterns from surfaces, combining investigator expertise with computational analysis. Second, it employs an aspect ratio-based random forest model to classify fire pattern shapes. Third, fire scene point cloud segmentation enables identification of fire-affected areas and mapping 2D fire patterns to 3D scenes for spatial relationships analysis. Lastly, spatial relationships between fire patterns and elements support an interpretation of fire scenes. These components provide pattern analysis that synthesizes qualitative and quantitative data. The framework's fire pattern shape classification results achieve 93% precision on synthetic data and 83% on real fire patterns.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"21 ","pages":"Article 100612"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165925000122","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fire patterns, consisting of fire effects that offer insights into fire behavior and origin, are currently classified based on investigators' visual observations, leading to subjective interpretations. This study proposes a quantitative fire pattern classification framework to support fire investigators, aiming for consistency and accuracy. The framework integrates four components. First, it leverages human-computer interaction to extract fire patterns from surfaces, combining investigator expertise with computational analysis. Second, it employs an aspect ratio-based random forest model to classify fire pattern shapes. Third, fire scene point cloud segmentation enables identification of fire-affected areas and mapping 2D fire patterns to 3D scenes for spatial relationships analysis. Lastly, spatial relationships between fire patterns and elements support an interpretation of fire scenes. These components provide pattern analysis that synthesizes qualitative and quantitative data. The framework's fire pattern shape classification results achieve 93% precision on synthetic data and 83% on real fire patterns.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.